These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32547591)

  • 1. Summary of Discussions From the 2019 OECD Conference on RNAi Based Pesticides.
    Mendelsohn ML; Gathmann A; Kardassi D; Sachana M; Hopwood EM; Dietz-Pfeilstetter A; Michelsen-Correa S; Fletcher SJ; Székács A
    Front Plant Sci; 2020; 11():740. PubMed ID: 32547591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety Considerations for Humans and Other Vertebrates Regarding Agricultural Uses of Externally Applied RNA Molecules.
    Rodrigues TB; Petrick JS
    Front Plant Sci; 2020; 11():407. PubMed ID: 32391029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental Fate of RNA Interference Pesticides: Adsorption and Degradation of Double-Stranded RNA Molecules in Agricultural Soils.
    Parker KM; Barragán Borrero V; van Leeuwen DM; Lever MA; Mateescu B; Sander M
    Environ Sci Technol; 2019 Mar; 53(6):3027-3036. PubMed ID: 30681839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosafety of GM Crop Plants Expressing dsRNA: Data Requirements and EU Regulatory Considerations.
    Arpaia S; Christiaens O; Giddings K; Jones H; Mezzetti B; Moronta-Barrios F; Perry JN; Sweet JB; Taning CNT; Smagghe G; Dietz-Pfeilstetter A
    Front Plant Sci; 2020; 11():940. PubMed ID: 32670333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosafety aspects of RNAi-based pests control.
    Chen Y; De Schutter K
    Pest Manag Sci; 2024 Aug; 80(8):3697-3706. PubMed ID: 38520331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk assessment of RNAi-based pesticides to non-target organisms: Evaluating the effects of sequence similarity in the parasitoid wasp Telenomus podisi.
    Castellanos NL; Smagghe G; Taning CNT; Oliveira EE; Christiaens O
    Sci Total Environ; 2022 Aug; 832():154746. PubMed ID: 35337872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.
    Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G
    Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations and Regulatory Approaches in the USA and in the EU for dsRNA-Based Externally Applied Pesticides for Plant Protection.
    Dietz-Pfeilstetter A; Mendelsohn M; Gathmann A; Klinkenbuß D
    Front Plant Sci; 2021; 12():682387. PubMed ID: 34177998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DsRNA-based pesticides: Considerations for efficiency and risk assessment.
    Dalakouras A; Koidou V; Papadopoulou K
    Chemosphere; 2024 Mar; 352():141530. PubMed ID: 38401868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Meeting report of the OECD conference on "Genome Editing: Applications in Agriculture-Implications for Health, Environment and Regulation".
    Friedrichs S; Takasu Y; Kearns P; Dagallier B; Oshima R; Schofield J; Moreddu C
    Transgenic Res; 2019 Aug; 28(3-4):419-463. PubMed ID: 31309374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNAi-based reverse genetics in the chelicerate model Tetranychus urticae: A comparative analysis of five methods for gene silencing.
    Suzuki T; Nunes MA; España MU; Namin HH; Jin P; Bensoussan N; Zhurov V; Rahman T; De Clercq R; Hilson P; Grbic V; Grbic M
    PLoS One; 2017; 12(7):e0180654. PubMed ID: 28704448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Perspective on RNAi-Based Biopesticides.
    Fletcher SJ; Reeves PT; Hoang BT; Mitter N
    Front Plant Sci; 2020; 11():51. PubMed ID: 32117388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods.
    Romeis J; Widmer F
    Front Plant Sci; 2020; 11():679. PubMed ID: 32582240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous Application of dsRNA in Plant Protection: Efficiency, Safety Concerns and Risk Assessment.
    Vatanparast M; Merkel L; Amari K
    Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNAi technologies in agricultural biotechnology: The Toxicology Forum 40th Annual Summer Meeting.
    Sherman JH; Munyikwa T; Chan SY; Petrick JS; Witwer KW; Choudhuri S
    Regul Toxicol Pharmacol; 2015 Nov; 73(2):671-80. PubMed ID: 26361858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing RNAi by using concatemerized double-stranded RNA.
    Sharath Chandra G; Asokan R; Manamohan M; Krishna Kumar N
    Pest Manag Sci; 2019 Feb; 75(2):506-514. PubMed ID: 30039906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control.
    Zhang H; Li HC; Miao XX
    Insect Sci; 2013 Feb; 20(1):15-30. PubMed ID: 23955822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in nanocarriers to improve the stability of dsRNA in the environment.
    Yang W; Wang B; Lei G; Chen G; Liu D
    Front Bioeng Biotechnol; 2022; 10():974646. PubMed ID: 36051593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of diet delivered various concentrations of double-stranded RNA in silencing a midgut and a non-midgut gene of Helicoverpa armigera.
    Asokan R; Chandra GS; Manamohan M; Kumar NK
    Bull Entomol Res; 2013 Oct; 103(5):555-63. PubMed ID: 23557597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biosafety research for non-target organism risk assessment of RNAi-based GE plants.
    Roberts AF; Devos Y; Lemgo GN; Zhou X
    Front Plant Sci; 2015; 6():958. PubMed ID: 26594220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.