These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 32548091)
1. Michel M; Homan EJ; Wiita E; Pedersen K; Almlöf I; Gustavsson AL; Lundbäck T; Helleday T; Warpman Berglund U Front Chem; 2020; 8():443. PubMed ID: 32548091 [TBL] [Abstract][Full Text] [Related]
2. In silico identification of putative druggable pockets in PRL3, a significant oncology target. Bennett GM; Starczewski J; Dela Cerna MVC Biochem Biophys Rep; 2024 Sep; 39():101767. PubMed ID: 39050014 [TBL] [Abstract][Full Text] [Related]
3. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins. Hussein HA; Borrel A; Geneix C; Petitjean M; Regad L; Camproux AC Nucleic Acids Res; 2015 Jul; 43(W1):W436-42. PubMed ID: 25956651 [TBL] [Abstract][Full Text] [Related]
4. Structure-based assessment and druggability classification of protein-protein interaction sites. Alzyoud L; Bryce RA; Al Sorkhy M; Atatreh N; Ghattas MA Sci Rep; 2022 May; 12(1):7975. PubMed ID: 35562538 [TBL] [Abstract][Full Text] [Related]
5. Binding site druggability assessment in fragment-based drug design. Zhou Y; Huang N Methods Mol Biol; 2015; 1289():13-21. PubMed ID: 25709029 [TBL] [Abstract][Full Text] [Related]
7. In Silico Target Druggability Assessment: From Structural to Systemic Approaches. Trosset JY; Cavé C Methods Mol Biol; 2019; 1953():63-88. PubMed ID: 30912016 [TBL] [Abstract][Full Text] [Related]
8. In silico assessment of potential druggable pockets on the surface of α1-antitrypsin conformers. Patschull AO; Gooptu B; Ashford P; Daviter T; Nobeli I PLoS One; 2012; 7(5):e36612. PubMed ID: 22590577 [TBL] [Abstract][Full Text] [Related]
9. Combining global and local measures for structure-based druggability predictions. Volkamer A; Kuhn D; Grombacher T; Rippmann F; Rarey M J Chem Inf Model; 2012 Feb; 52(2):360-72. PubMed ID: 22148551 [TBL] [Abstract][Full Text] [Related]
10. Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. Vidler LR; Brown N; Knapp S; Hoelder S J Med Chem; 2012 Sep; 55(17):7346-59. PubMed ID: 22788793 [TBL] [Abstract][Full Text] [Related]
11. Identifying and characterizing binding sites and assessing druggability. Halgren TA J Chem Inf Model; 2009 Feb; 49(2):377-89. PubMed ID: 19434839 [TBL] [Abstract][Full Text] [Related]
12. Druggability Analysis of Protein Targets for Drug Discovery to Combat Hanes R; Liu Y; Huang Z Microorganisms; 2024 May; 12(6):. PubMed ID: 38930455 [TBL] [Abstract][Full Text] [Related]
13. Druggability analysis and classification of protein tyrosine phosphatase active sites. Ghattas MA; Raslan N; Sadeq A; Al Sorkhy M; Atatreh N Drug Des Devel Ther; 2016; 10():3197-3209. PubMed ID: 27757011 [TBL] [Abstract][Full Text] [Related]
14. In Silico Methods for Identification of Potential Active Sites of Therapeutic Targets. Liao J; Wang Q; Wu F; Huang Z Molecules; 2022 Oct; 27(20):. PubMed ID: 36296697 [TBL] [Abstract][Full Text] [Related]
15. Benchmark Study Based on 2P2I Wang Z; Kang Y; Li D; Sun H; Dong X; Yao X; Xu L; Chang S; Li Y; Hou T J Phys Chem B; 2018 Mar; 122(9):2544-2555. PubMed ID: 29420886 [TBL] [Abstract][Full Text] [Related]
16. Computational method to identify druggable binding sites that target protein-protein interactions. Li H; Kasam V; Tautermann CS; Seeliger D; Vaidehi N J Chem Inf Model; 2014 May; 54(5):1391-400. PubMed ID: 24762202 [TBL] [Abstract][Full Text] [Related]
17. Targeting the NF-κB/IκBα complex via fragment-based E-Pharmacophore virtual screening and binary QSAR models. Kanan T; Kanan D; Erol I; Yazdi S; Stein M; Durdagi S J Mol Graph Model; 2019 Jan; 86():264-277. PubMed ID: 30415122 [TBL] [Abstract][Full Text] [Related]
18. Development of a rule-based method for the assessment of protein druggability. Perola E; Herman L; Weiss J J Chem Inf Model; 2012 Apr; 52(4):1027-38. PubMed ID: 22448735 [TBL] [Abstract][Full Text] [Related]
19. CryptoSite: Expanding the Druggable Proteome by Characterization and Prediction of Cryptic Binding Sites. Cimermancic P; Weinkam P; Rettenmaier TJ; Bichmann L; Keedy DA; Woldeyes RA; Schneidman-Duhovny D; Demerdash ON; Mitchell JC; Wells JA; Fraser JS; Sali A J Mol Biol; 2016 Feb; 428(4):709-719. PubMed ID: 26854760 [TBL] [Abstract][Full Text] [Related]
20. Druggability Assessment in TRAPP Using Machine Learning Approaches. Yuan JH; Han SB; Richter S; Wade RC; Kokh DB J Chem Inf Model; 2020 Mar; 60(3):1685-1699. PubMed ID: 32105476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]