BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3254818)

  • 21. Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues.
    De Castro SCP; Hirst CS; Savery D; Rolo A; Lickert H; Andersen B; Copp AJ; Greene NDE
    Dev Biol; 2018 Mar; 435(2):130-137. PubMed ID: 29397878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deceleration and acceleration in the rate of posterior neuropore closure during neurulation in the curly tail (ct) mouse embryo.
    van Straaten HW; Hekking JW; Copp AJ; Bernfield M
    Anat Embryol (Berl); 1992; 185(2):169-74. PubMed ID: 1536449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transferrin and its receptor in the development of genetically determined neural tube defects in the mouse embryo.
    Hoyle C; Henderson DJ; Matthews DJ; Copp AJ
    Dev Dyn; 1996 Sep; 207(1):35-46. PubMed ID: 8875074
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inositol deficiency increases the susceptibility to neural tube defects of genetically predisposed (curly tail) mouse embryos in vitro.
    Cockroft DL; Brook FA; Copp AJ
    Teratology; 1992 Feb; 45(2):223-32. PubMed ID: 1615432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genesis and prevention of spinal neural tube defects in the curly tail mutant mouse: involvement of retinoic acid and its nuclear receptors RAR-beta and RAR-gamma.
    Chen WH; Morriss-Kay GM; Copp AJ
    Development; 1995 Mar; 121(3):681-91. PubMed ID: 7720576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Abnormalities of neural tube formation in pre-spina bifida splotch-delayed mouse embryos.
    Yang XM; Trasler DG
    Teratology; 1991 Jun; 43(6):643-57. PubMed ID: 1882355
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced glucose consumption in the curly tail mouse does not initiate the pathogenesis leading to spinal neural tube defects.
    Peeters MC; Geelen JL; Hekking JW; Chavannes N; Geraedts JP; van Straaten HW
    J Nutr; 1998 Oct; 128(10):1819-28. PubMed ID: 9772156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vangl2 disruption alters the biomechanics of late spinal neurulation leading to spina bifida in mouse embryos.
    Galea GL; Nychyk O; Mole MA; Moulding D; Savery D; Nikolopoulou E; Henderson DJ; Greene NDE; Copp AJ
    Dis Model Mech; 2018 Mar; 11(3):. PubMed ID: 29590636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased expression of Grainyhead-like-3 rescues spina bifida in a folate-resistant mouse model.
    Gustavsson P; Greene ND; Lad D; Pauws E; de Castro SC; Stanier P; Copp AJ
    Hum Mol Genet; 2007 Nov; 16(21):2640-6. PubMed ID: 17720888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Valproic acid disrupts the biomechanics of late spinal neural tube closure in mouse embryos.
    Hughes A; Greene NDE; Copp AJ; Galea GL
    Mech Dev; 2018 Feb; 149():20-26. PubMed ID: 29225143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Etiology, pathogenesis and prevention of neural tube defects.
    Padmanabhan R
    Congenit Anom (Kyoto); 2006 Jun; 46(2):55-67. PubMed ID: 16732763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro expression of neural tube pathology in the vl mutant mouse.
    Wilson DB; Wyatt DP
    J Neuropathol Exp Neurol; 1993 May; 52(3):253-9. PubMed ID: 8492142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inositol prevents folate-resistant neural tube defects in the mouse.
    Greene ND; Copp AJ
    Nat Med; 1997 Jan; 3(1):60-6. PubMed ID: 8986742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification and localization of expression of the retinoic acid receptor-beta and -gamma mRNA isoforms during neurulation in mouse embryos with or without spina bifida.
    Mao GE; Collins MD
    Teratology; 2002 Dec; 66(6):331-43. PubMed ID: 12486767
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol.
    Cogram P; Hynes A; Dunlevy LP; Greene ND; Copp AJ
    Hum Mol Genet; 2004 Jan; 13(1):7-14. PubMed ID: 14613966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic models of mammalian neural tube defects.
    Copp AJ
    Ciba Found Symp; 1994; 181():118-34; discussion 134-43. PubMed ID: 8005021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Over-expression of Grhl2 causes spina bifida in the Axial defects mutant mouse.
    Brouns MR; De Castro SC; Terwindt-Rouwenhorst EA; Massa V; Hekking JW; Hirst CS; Savery D; Munts C; Partridge D; Lamers W; Köhler E; van Straaten HW; Copp AJ; Greene ND
    Hum Mol Genet; 2011 Apr; 20(8):1536-46. PubMed ID: 21262862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatio-temporal curvature pattern of the caudal body axis for non-mutant and curly tail mouse embryos during the period of caudal neural tube closure.
    Peeters MC; Hekking WM; Vainas T; Drukker J; van Straaten HW
    Anat Embryol (Berl); 1997 Mar; 195(3):259-66. PubMed ID: 9084824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mini-review: toward understanding mechanisms of genetic neural tube defects in mice.
    Harris MJ; Juriloff DM
    Teratology; 1999 Nov; 60(5):292-305. PubMed ID: 10525207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Basal lamina and extracellular matrix alterations in the caudal neural tube of the delayed Splotch embryo.
    O'Shea KS; Liu LH
    Brain Res; 1987 Dec; 465(1-2):11-20. PubMed ID: 3440195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.