BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32548417)

  • 1. Increased Active Sites on Irregular Morphological α-Fe
    Sun J; Xia W; Zheng Q; Zeng X; Liu W; Liu G; Wang P
    ACS Omega; 2020 Jun; 5(21):12339-12345. PubMed ID: 32548417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese.
    Gurudayal ; Chiam SY; Kumar MH; Bassi PS; Seng HL; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5852-9. PubMed ID: 24702963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe
    Masoumi Z; Tayebi M; Kolaei M; Tayyebi A; Ryu H; Jang JI; Lee BK
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39215-39229. PubMed ID: 34374510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation.
    Cai J; Chen H; Liu C; Yin S; Li H; Xu L; Liu H; Xie Q
    Dalton Trans; 2020 Aug; 49(32):11282-11289. PubMed ID: 32760974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting.
    Mao L; Huang YC; Fu Y; Dong CL; Shen S
    Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemical sensing and mechanism investigation of hydrogen peroxide using a pristine hematite nanoarrays.
    Lv J; Fan M; Zhang L; Zhou Q; Wang L; Chang Z; Chong R
    Talanta; 2022 Jan; 237():122894. PubMed ID: 34736710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Rh-Boosted Photoelectrochemical Water Oxidation of α-Fe
    Kim YM; Hong Y; Hur K; Kim MS; Sung YM
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37290-37299. PubMed ID: 37489940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting.
    Nyarige JS; Paradzah AT; Krüger TPJ; Diale M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation.
    Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile Zn and Ni Co-Doped Hematite Nanorods for Efficient Photocatalytic Water Oxidation.
    Talibawo J; Kyesmen PI; Cyulinyana MC; Diale M
    Nanomaterials (Basel); 2022 Aug; 12(17):. PubMed ID: 36079998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertically Aligned CdO-Decked α-Fe
    Alhabradi M; Nundy S; Ghosh A; Tahir AA
    ACS Omega; 2022 Aug; 7(32):28396-28407. PubMed ID: 35990474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible light-induced electronic structure modulation of Nb- and Ta-doped α-Fe
    Chang HW; Fu Y; Lee WY; Lu YR; Huang YC; Chen JL; Chen CL; Chou WC; Chen JM; Lee JF; Shen S; Dong CL
    Nanotechnology; 2018 Feb; 29(6):064002. PubMed ID: 29176050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation.
    Zhu C; Li C; Zheng M; Delaunay JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical Co-Pi Clusters/Fe
    Kim N; Ju S; Ha J; Choi H; Sung H; Lee H
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the enhanced photoelectrochemical performance of hydrothermally controlled hematite nanostructures for proficient solar water oxidation.
    Park JW; Subramanian A; Mahadik MA; Lee SY; Choi SH; Jang JS
    Dalton Trans; 2018 Mar; 47(12):4076-4086. PubMed ID: 29436539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational construction of S-doped FeOOH onto Fe
    Duc Quang N; Cao Van P; Majumder S; Jeong JR; Kim D; Kim C
    J Colloid Interface Sci; 2022 Jun; 616():749-758. PubMed ID: 35247813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotextured Spikes of α-Fe
    Hussain S; Tavakoli MM; Waleed A; Virk US; Yang S; Waseem A; Fan Z; Nadeem MA
    Langmuir; 2018 Mar; 34(12):3555-3564. PubMed ID: 29537275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hematite coated, conductive Y doped ZnO nanorods for high efficiency solar water splitting.
    Commandeur D; McGuckin J; Chen Q
    Nanotechnology; 2020 Apr; 31(26):265403. PubMed ID: 32101177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fe
    Ma J; Wang Q; Li L; Zong X; Sun H; Tao R; Fan X
    J Colloid Interface Sci; 2021 Nov; 602():32-42. PubMed ID: 34118603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.