These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32548417)

  • 21. Fabrication of CuFe
    Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sb-Doped SnO
    Han H; Kment S; Karlicky F; Wang L; Naldoni A; Schmuki P; Zboril R
    Small; 2018 May; 14(19):e1703860. PubMed ID: 29655304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerium-Doped Iron Oxide Nanorod Arrays for Photoelectrochemical Water Splitting.
    Zhao HP; Zhu ML; Shi HY; Zhou QQ; Chen R; Lin SW; Tong MH; Ji MH; Jiang X; Liao CX; Chen YX; Lu CZ
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36558179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. FeO-Based Hierarchical Structures on FTO Substrates and Their Photocurrent.
    Xia W; Sun J; Zeng X; Wang P; Luo M; Dong J; Yu H
    ACS Omega; 2020 Feb; 5(5):2205-2213. PubMed ID: 32064381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cobalt-doped double-layer α-Fe
    Bai L; Wang J; Yang K; Yan Y; Jin M; Cui D; Zhao M
    Discov Nano; 2023 Feb; 18(1):10. PubMed ID: 36764982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ growth of α-Fe
    Li C; Chen Z; Yuan W; Xu QH; Li CM
    Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrothermal synthesis of CdS nanorods anchored on α-Fe
    Lei R; Ni H; Chen R; Gu H; Zhang B; Zhan W
    J Colloid Interface Sci; 2018 Mar; 514():496-506. PubMed ID: 29289732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hydrothermally grown CdS nanograin-sensitized 1D Zr:α-Fe
    Mahadik MA; Subramanian A; Ryu J; Cho M; Jang JS
    Dalton Trans; 2017 Feb; 46(7):2377-2386. PubMed ID: 28139791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy and environmental applications of Sn
    Nagappagari LR; Lee J; Lee H; Jeong B; Lee K
    Environ Pollut; 2021 Feb; 271():116318. PubMed ID: 33360662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ti-doped α-Fe
    Yan D; Liu J; Shang Z; Luo H
    Dalton Trans; 2017 Aug; 46(32):10558-10563. PubMed ID: 28466901
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.
    Shen S; Zhou J; Dong CL; Hu Y; Tseng EN; Guo P; Guo L; Mao SS
    Sci Rep; 2014 Oct; 4():6627. PubMed ID: 25316219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene.
    Yoon KY; Lee JS; Kim K; Bak CH; Kim SI; Kim JB; Jang JH
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22634-9. PubMed ID: 25469502
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite.
    Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrasonication-assisted liquid-phase exfoliation enhances photoelectrochemical performance in α-Fe
    Masoumi Z; Tayebi M; Lee BK
    Ultrason Sonochem; 2021 Apr; 72():105403. PubMed ID: 33360532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of 3D hierarchical Fe
    Zhang X; Chen H; Zhang W; Zhang L; Liu X; Ma J; Xu S; Li H
    Nanotechnology; 2022 Jan; 33(15):. PubMed ID: 34983031
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.