These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32548482)

  • 1. Alternative Method for the Treatment of Hydrometallurgical Arsenic-Calcium Residues: The Immobilization of Arsenic as Scorodite.
    Ma X; Yuan Z; Zhang G; Zhang J; Wang X; Wang S; Jia Y
    ACS Omega; 2020 Jun; 5(22):12979-12988. PubMed ID: 32548482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detoxification and reclamation of hydrometallurgical arsenic- and trace metals-bearing gypsum via hydrothermal recrystallization in acid solution.
    Ma X; Yao S; Yuan Z; Bi R; Wu X; Zhang J; Wang S; Wang X; Jia Y
    Chemosphere; 2020 Jul; 250():126290. PubMed ID: 32120149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite.
    Qi X; Li Y; Wei L; Hao F; Zhu X; Wei Y; Li K; Wang H
    RSC Adv; 2019 Dec; 10(1):29-42. PubMed ID: 35492560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ oxidative arsenic precipitation as scorodite during carbon catalyzed enargite leaching process.
    Jahromi FG; Ghahreman A
    J Hazard Mater; 2018 Oct; 360():631-638. PubMed ID: 30153628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-enhanced and efficient removal of arsenic from waste acid using magnetite as an in situ iron donator.
    Cai G; Zhu X; Li K; Qi X; Wei Y; Wang H; Hao F
    Water Res; 2019 Jun; 157():269-280. PubMed ID: 30959330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilizing arsenic-enriched wastewater from utilization of crude antimony oxides as scorodite using a novel multivalent iron source.
    Tang Z; Tang X; Liu H; Xiao Z
    Chemosphere; 2023 Oct; 339():139751. PubMed ID: 37557998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of arsenic into gypsum: Relevant to arsenic removal and immobilization process in hydrometallurgical industry.
    Zhang D; Yuan Z; Wang S; Jia Y; Demopoulos GP
    J Hazard Mater; 2015 Dec; 300():272-280. PubMed ID: 26188870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic associated with gypsum produced from Fe(III)-As(V) coprecipitation: Implications for the stability of industrial As-bearing waste.
    Wang S; Zhang D; Li X; Zhang G; Wang Y; Wang X; Gomez MA; Jia Y
    J Hazard Mater; 2018 Oct; 360():311-318. PubMed ID: 30125747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reclamation of an arsenic-bearing gypsum via acid washing and CaO-As stabilization involving svabite formation in thermal treatment.
    Yang D; Sasaki A; Endo M
    J Environ Manage; 2019 Feb; 231():811-818. PubMed ID: 30419436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal treatment of arsenic sulfide slag to immobilize arsenic into scorodite and recycle sulfur.
    Zhang W; Lu H; Liu F; Wang C; Zhang Z; Zhang J
    J Hazard Mater; 2021 Mar; 406():124735. PubMed ID: 33296758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic immobilization as alunite-type phases: the arsenate substitution in alunite and hydronium alunite.
    Sunyer A; Currubí M; Viñals J
    J Hazard Mater; 2013 Oct; 261():559-69. PubMed ID: 23994654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization.
    Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W
    Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of arsenic as scorodite by a thermoacidophilic mixed culture via As(III)-catalyzed oxidation with activated carbon.
    Vega-Hernandez S; Weijma J; Buisman CJN
    J Hazard Mater; 2019 Apr; 368():221-227. PubMed ID: 30682541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of Lead Slag as In Situ Iron Source for Arsenic Removal by Forming Iron Arsenate.
    Chen P; Zhao Y; Yao J; Zhu J; Cao J
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism and thermodynamics of scorodite formation by oxidative precipitation from arsenic-bearing solution.
    Tang Z; Tang X; Xiao Z; Liu H
    Environ Res; 2024 Jun; 250():118500. PubMed ID: 38387492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An all-in-one strategy for resource recovery and immobilization of arsenic from arsenic-bearing gypsum sludge.
    Yong Y; Yongkui L; Jianhang H; Dapeng Z; Hua W
    Chemosphere; 2022 Jun; 296():134078. PubMed ID: 35202660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Innovative methodology for comprehensive utilization of arsenic-bearing neutralization sludge.
    Zhang T; Han J; Dong L; Liu D; Jiao F; Qin W; Liu W
    J Environ Manage; 2024 Feb; 353():120148. PubMed ID: 38306856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term stability of arsenic calcium residue (ACR) treated with FeSO
    Li E; Yang T; Wang Q; Yu Z; Tian S; Wang X
    J Hazard Mater; 2021 Oct; 420():126549. PubMed ID: 34252665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags.
    Zhang X; Sun Y; Ma Y; Ji W; Ren Y
    Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term stability of the Fe(III)-As(V) coprecipitates: Effects of neutralization mode and the addition of Fe(II) on arsenic retention.
    Zhang D; Wang S; Gomez MA; Wang Y; Jia Y
    Chemosphere; 2019 Dec; 237():124503. PubMed ID: 31398610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.