These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 32548507)
21. Inhibiting Solvent Co-Intercalation in a Graphite Anode by a Localized High-Concentration Electrolyte in Fast-Charging Batteries. Jiang LL; Yan C; Yao YX; Cai W; Huang JQ; Zhang Q Angew Chem Int Ed Engl; 2021 Feb; 60(7):3402-3406. PubMed ID: 33107707 [TBL] [Abstract][Full Text] [Related]
22. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172 [TBL] [Abstract][Full Text] [Related]
23. Silicene/boron nitride heterostructure for the design of highly efficient anode materials in lithium-ion battery. Wang T; Zhang S; Yin L; Li C; Xia C; An Y; Wei S J Phys Condens Matter; 2020 May; 32(35):. PubMed ID: 32325446 [TBL] [Abstract][Full Text] [Related]
24. Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Kim N; Chae S; Ma J; Ko M; Cho J Nat Commun; 2017 Oct; 8(1):812. PubMed ID: 28993658 [TBL] [Abstract][Full Text] [Related]
25. Promoting Rechargeable Batteries Operated at Low Temperature. Dong X; Wang YG; Xia Y Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652 [TBL] [Abstract][Full Text] [Related]
26. Resolution of Lithium Deposition versus Intercalation of Graphite Anodes in Lithium Ion Batteries: An In Situ Electron Paramagnetic Resonance Study. Wang B; Le Fevre LW; Brookfield A; McInnes EJL; Dryfe RAW Angew Chem Int Ed Engl; 2021 Sep; 60(40):21860-21867. PubMed ID: 34297479 [TBL] [Abstract][Full Text] [Related]
27. Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries. Weng S; Yang G; Zhang S; Liu X; Zhang X; Liu Z; Cao M; Ateş MN; Li Y; Chen L; Wang Z; Wang X Nanomicro Lett; 2023 Sep; 15(1):215. PubMed ID: 37737445 [TBL] [Abstract][Full Text] [Related]
28. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries. Badi N; Erra AR; Hernandez FC; Okonkwo AO; Hobosyan M; Martirosyan KS Nanoscale Res Lett; 2014; 9(1):360. PubMed ID: 25114651 [TBL] [Abstract][Full Text] [Related]
29. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes. Zhang X; Qiu X; Kong D; Zhou L; Li Z; Li X; Zhi L ACS Nano; 2017 Jul; 11(7):7476-7484. PubMed ID: 28692250 [TBL] [Abstract][Full Text] [Related]
30. First-principles calculations of bulk, surface and interfacial phases and properties of silicon graphite composites as anode materials for lithium ion batteries. Olou'ou Guifo SB; Mueller JE; Henriques D; Markus T Phys Chem Chem Phys; 2022 Apr; 24(16):9432-9448. PubMed ID: 35388824 [TBL] [Abstract][Full Text] [Related]
31. Surface Decoration of TiC Nanocrystals onto the Graphite Anode Enables Fast-Charging Lithium-Ion Batteries. Suh JH; Choi I; Park S; Kim DK; Kim Y; Park MS ACS Appl Mater Interfaces; 2024 Feb; 16(7):8853-8862. PubMed ID: 38346852 [TBL] [Abstract][Full Text] [Related]
32. "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. Wang R; Wang L; Liu R; Li X; Wu Y; Ran F ACS Nano; 2024 Jan; 18(4):2611-2648. PubMed ID: 38221745 [TBL] [Abstract][Full Text] [Related]
33. Theoretical prediction of silicene as a new candidate for the anode of lithium-ion batteries. Seyed-Talebi SM; Kazeminezhad I; Beheshtian J Phys Chem Chem Phys; 2015 Nov; 17(44):29689-96. PubMed ID: 26477401 [TBL] [Abstract][Full Text] [Related]
34. Li Pang B; Yang T; Wu Z; Li Z; Jin Z; Zhang W; Xia Y; Huang H; He X; Gan Y; Xia X; Zhang J ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38623904 [TBL] [Abstract][Full Text] [Related]
35. 2D Dumbbell Silicene as a High Storage Capacity and Fast Ion Diffusion Anode for Li-Ion Batteries. Vargas DD; Cardoso GL; Piquini PC; Ahuja R; Baierle RJ ACS Appl Mater Interfaces; 2022 Oct; 14(41):47262-47271. PubMed ID: 36205921 [TBL] [Abstract][Full Text] [Related]
36. The effect of Ge doping concentration on the electrochemical performance of silicene anode for lithium-ion batteries: a first-principles study. Song J; Jiang M; Yuwono JA; Liu S; Wang J; Zhang Q; Chen Y; Zhang J; Wu X; Liu J Phys Chem Chem Phys; 2023 Nov; 25(44):30716-30726. PubMed ID: 37934128 [TBL] [Abstract][Full Text] [Related]
37. Silicon quantum dots inlaid micron graphite anode for fast chargeable and high energy density Li-ion batteries. Li H; Buckingham MA Front Chem; 2022; 10():1091268. PubMed ID: 36561146 [TBL] [Abstract][Full Text] [Related]
38. Strain enhanced lithium adsorption and diffusion on silicene. Wang X; Luo Y; Yan T; Cao W; Zhang M Phys Chem Chem Phys; 2017 Mar; 19(9):6563-6568. PubMed ID: 28203661 [TBL] [Abstract][Full Text] [Related]
39. Solvent-Solvent Interaction Mediated Lithium-Ion (De)intercalation Chemistry in Propylene Carbonate Based Electrolytes for Lithium-Sulfur Batteries. Liang H; Ma Z; Wang Y; Zhao F; Cao Z; Cavallo L; Li Q; Ming J ACS Nano; 2023 Sep; 17(18):18062-18073. PubMed ID: 37703060 [TBL] [Abstract][Full Text] [Related]
40. Investigation of Lithium Ion Diffusion of Graphite Anode by the Galvanostatic Intermittent Titration Technique. Park JH; Yoon H; Cho Y; Yoo CY Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443205 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]