These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32548509)

  • 41. Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As(III) by mesoporous Fe/Al bimetallic particles.
    Cheng Z; Fu F; Dionysiou DD; Tang B
    Water Res; 2016 Jun; 96():22-31. PubMed ID: 27016635
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal.
    He R; Peng Z; Lyu H; Huang H; Nan Q; Tang J
    Sci Total Environ; 2018 Jan; 612():1177-1186. PubMed ID: 28892862
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of Jordanian and standard diatomaceous earth as an adsorbent for removal of Sm(III) and Nd(III) from aqueous solution.
    Hamadneh I; Alatawi A; Zalloum R; Albuqain R; Alsotari S; Khalili FI; Al-Dujaili AH
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20969-20980. PubMed ID: 31115818
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient removal of chromate ions from aqueous solution using a highly cost-effective ferric coordinated [3-(2-aminoethylamino)propyl]trimethoxysilane-MCM-41 adsorbent.
    Madri RK; Tiwari D; Sinha I
    RSC Adv; 2021 Mar; 11(19):11204-11214. PubMed ID: 35423642
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An efficient, economical, and easy mass production biochar supported zero-valent iron composite derived from direct-reduction natural goethite for Cu(II) and Cr(VI) remove.
    Cai M; Zeng J; Chen Y; He P; Chen F; Wang X; Liang J; Gu C; Huang D; Zhang K; Gan M; Zhu J
    Chemosphere; 2021 Dec; 285():131539. PubMed ID: 34329142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of mesoporous Cu/Mg/Fe layered double hydroxide and its adsorption performance for arsenate in aqueous solutions.
    Guo Y; Zhu Z; Qiu Y; Zhao J
    J Environ Sci (China); 2013 May; 25(5):944-53. PubMed ID: 24218824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chitosan modification persimmon tannin bioadsorbent for highly efficient removal of Pb(II) from aqueous environment: the adsorption equilibrium, kinetics and thermodynamics.
    Li X; Wang Z; Liang H; Ning J; Li G; Zhou Z
    Environ Technol; 2019 Jan; 40(1):112-124. PubMed ID: 28911271
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing.
    Dong X; Ma LQ; Li Y
    J Hazard Mater; 2011 Jun; 190(1-3):909-15. PubMed ID: 21550718
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of Metal-Organic Framework ZnO
    Choi JW; Park YJ; Choi SJ
    ACS Omega; 2020 Apr; 5(15):8721-8729. PubMed ID: 32337434
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel synthesis of Ni/Fe layered double hydroxides using urea and glycerol and their enhanced adsorption behavior for Cr(VI) removal.
    Abo El-Reesh GY; Farghali AA; Taha M; Mahmoud RK
    Sci Rep; 2020 Jan; 10(1):587. PubMed ID: 31953466
    [TBL] [Abstract][Full Text] [Related]  

  • 51.
    El Shahawy A; Ahmed IA; Wagdy R; Ragab AH; Shalaby NH
    Molecules; 2021 Oct; 26(19):. PubMed ID: 34641560
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fast Removal of Propranolol from Water by Attapulgite/Graphene Oxide Magnetic Ternary Composites.
    Deng Y; Li Y; Nie W; Gao X; Zhang L; Yang P; Tan X
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30897739
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Polypyrrole modified magnetic reduced graphene oxide composites: synthesis, characterization and application for selective lead adsorption.
    Liu Z; Gao Z; Xu L; Hu F
    RSC Adv; 2020 May; 10(30):17524-17533. PubMed ID: 35515634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphate Removal Mechanisms in Aqueous Solutions by Three Different Fe-Modified Biochars.
    Qin Y; Wu X; Huang Q; Beiyuan J; Wang J; Liu J; Yuan W; Nie C; Wang H
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A SnO
    Hassan SSM; Kamel AH; Hassan AA; Amr AEE; El-Naby HA; Elsayed EA
    Nanomaterials (Basel); 2020 Feb; 10(2):. PubMed ID: 32024060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Preparation of graphene oxide/cellulose composites in ionic liquid for Ce (III) removal.
    Hao Y; Cui Y; Peng J; Zhao N; Li S; Zhai M
    Carbohydr Polym; 2019 Mar; 208():269-275. PubMed ID: 30658800
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synthesis and adsorption of FeMnLa-impregnated biochar composite as an adsorbent for As(III) removal from aqueous solutions.
    Lin L; Zhang G; Liu X; Khan ZH; Qiu W; Song Z
    Environ Pollut; 2019 Apr; 247():128-135. PubMed ID: 30669080
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Removal of Zn(II), Mn(II) and Cu(II) by adsorption onto banana stalk biochar: adsorption process and mechanisms.
    Deng H; Li Q; Huang M; Li A; Zhang J; Li Y; Li S; Kang C; Mo W
    Water Sci Technol; 2020 Dec; 82(12):2962-2974. PubMed ID: 33341785
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adsorption of Cadmium, Manganese and Lead Ions from Aqueous Solutions Using Spent Coffee Grounds and Biochar Produced by Its Pyrolysis in the Fluidized Bed Reactor.
    Chwastowski J; Bradło D; Żukowski W
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32575573
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficient arsenic(V) removal from contaminated water using natural clay and clay composite adsorbents.
    Foroutan R; Mohammadi R; Adeleye AS; Farjadfard S; Esvandi Z; Arfaeinia H; Sorial GA; Ramavandi B; Sahebi S
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29748-29762. PubMed ID: 31407259
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.