BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32548690)

  • 41. Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp. MD-5.
    Yang G; Sun H; Cao R; Liu Q; Mao X
    Int J Biol Macromol; 2020 Mar; 146():518-523. PubMed ID: 31917207
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production of recombinant Bacillus subtilis chitosanase, suitable for biosynthesis of chitosan-oligosaccharides.
    Pechsrichuang P; Yoohat K; Yamabhai M
    Bioresour Technol; 2013 Jan; 127():407-14. PubMed ID: 23138063
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fermentation conditions and properties of a chitosanase from Acinetobacter sp. C-17.
    Zhu XF; Wu XY; Dai Y
    Biosci Biotechnol Biochem; 2003 Feb; 67(2):284-90. PubMed ID: 12728987
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural insights into the substrate-binding mechanism for a novel chitosanase.
    Lyu Q; Wang S; Xu W; Han B; Liu W; Jones DN; Liu W
    Biochem J; 2014 Jul; 461(2):335-45. PubMed ID: 24766439
    [TBL] [Abstract][Full Text] [Related]  

  • 45. N-Terminal seven-amino-acid extension simultaneously improves the pH stability, optimal temperature, thermostability and catalytic efficiency of chitosanase CsnA.
    Han Y; Gao P; Yu W; Lu X
    Biotechnol Lett; 2018 Jan; 40(1):75-82. PubMed ID: 28905142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Increasing chitosanase production in
    Zhang C; Li Y; Zhang T; Zhao H
    Bioengineered; 2021 Dec; 12(1):266-277. PubMed ID: 33356788
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Production of a Thermostable Chitosanase from Shrimp Heads via
    Doan CT; Tran TN; Nguyen VB; Nguyen AD; Wang SL
    Mar Drugs; 2019 Apr; 17(4):. PubMed ID: 30974812
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cloning and characterization of a bifunctional glycosyl hydrolase from an antagonistic Pseudomonas putida strain P3(4).
    Singh NA; Shanmugam V
    J Basic Microbiol; 2012 Jun; 52(3):340-9. PubMed ID: 21953214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Demonstration of catalytic proton acceptor of chitosanase from Paenibacillus fukuinensis by comprehensive analysis of mutant library.
    Isogawa D; Fukuda T; Kuroda K; Kusaoke H; Kimoto H; Suye S; Ueda M
    Appl Microbiol Biotechnol; 2009 Nov; 85(1):95-104. PubMed ID: 19517107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Properties of chitosanase from Bacillus cereus S1.
    Kurakake M; Yo-u S; Nakagawa K; Sugihara M; Komaki T
    Curr Microbiol; 2000 Jan; 40(1):6-9. PubMed ID: 10568796
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of chitosanase production by Bacillus mojavensis EGE-B-5.2i.
    Liaqat F; Sözer Bahadır P; Elibol M; Eltem R
    J Basic Microbiol; 2018 Oct; 58(10):836-847. PubMed ID: 30022499
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Secretory production in Escherichia coli of a GH46 chitosanase from Chromobacterium violaceum, suitable to generate antifungal chitooligosaccharides.
    Azevedo MIG; Oliveira ST; Silva CFB; Carneiro RF; Nagano CS; Gadelha ACS; Torres DC; Monteiro-Júnior JE; Girão MS; Muniz CR; Freitas CDT; Grangeiro TB
    Int J Biol Macromol; 2020 Dec; 165(Pt A):1482-1495. PubMed ID: 33017605
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Amphiprotic Novel Chitosanase from Bacillus mycoides and Its Application in the Production of Chitooligomers with Their Antioxidant and Anti-Inflammatory Evaluation.
    Liang TW; Chen WT; Lin ZH; Kuo YH; Nguyen AD; Pan PS; Wang SL
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27517920
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modification of genetic regulation of a heterologous chitosanase gene in Streptomyces lividans TK24 leads to chitosanase production in the absence of chitosan.
    Dubeau MP; Guay I; Brzezinski R
    Microb Cell Fact; 2011 Feb; 10():7. PubMed ID: 21310076
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of essential leucine residue for catalytic activity of novel thermostable chitosanase by site-directed mutagenesis.
    Yoon HG; Yang SW; Kim HY; Kim HK; Shin DH; Hong BS; Cho HY
    J Protein Chem; 2000 Oct; 19(7):621-30. PubMed ID: 11233177
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Cloning and expression of an Aspergillus fumigatus chitosanase gene].
    Liang DC; Zuo AJ; Guo G; Zhang JY
    Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):539-42. PubMed ID: 16245866
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Advances in the structure and function of chitosanase].
    Xie J; Li Y; Liu J; Gou Y; Wang G
    Sheng Wu Gong Cheng Xue Bao; 2023 Mar; 39(3):912-929. PubMed ID: 36994562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New chitosan-degrading strains that produce chitosanases similar to ChoA of Mitsuaria chitosanitabida.
    Yun C; Amakata D; Matsuo Y; Matsuda H; Kawamukai M
    Appl Environ Microbiol; 2005 Sep; 71(9):5138-44. PubMed ID: 16151097
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein-engineering of chitosanase from Bacillus sp. MN to alter its substrate specificity.
    Regel EK; Weikert T; Niehues A; Moerschbacher BM; Singh R
    Biotechnol Bioeng; 2018 Apr; 115(4):863-873. PubMed ID: 29280476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discoidin domain of chitosanase is required for binding to the fungal cell wall.
    Kimoto H; Akamatsu M; Fujii Y; Tatsumi H; Kusaoke H; Taketo A
    J Mol Microbiol Biotechnol; 2010; 18(1):14-23. PubMed ID: 20068354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.