These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
392 related articles for article (PubMed ID: 32548768)
1. Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surface-enhanced Raman spectroscopy. Cao C; Li P; Liao H; Wang J; Tang X; Yang L Anal Bioanal Chem; 2020 Jul; 412(19):4609-4617. PubMed ID: 32548768 [TBL] [Abstract][Full Text] [Related]
2. Assembling PVP-Au NPs as portable chip for sensitive detection of cyanide with surface-enhanced Raman spectroscopy. Li P; Li P; Tan X; Wang J; Zhang Y; Han H; Yang L Anal Bioanal Chem; 2020 May; 412(12):2863-2871. PubMed ID: 32112131 [TBL] [Abstract][Full Text] [Related]
3. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583 [TBL] [Abstract][Full Text] [Related]
4. Dual platform based sandwich assay surface-enhanced Raman scattering DNA biosensor for the sensitive detection of food adulteration. Khalil I; Yehye WA; Muhd Julkapli N; Sina AA; Rahmati S; Basirun WJ; Seyfoddin A Analyst; 2020 Feb; 145(4):1414-1426. PubMed ID: 31845928 [TBL] [Abstract][Full Text] [Related]
5. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
6. In situ fabrication of label-free optical sensing paper strips for the rapid surface-enhanced Raman scattering (SERS) detection of brassinosteroids in plant tissues. Chen M; Zhang Z; Liu M; Qiu C; Yang H; Chen X Talanta; 2017 Apr; 165():313-320. PubMed ID: 28153259 [TBL] [Abstract][Full Text] [Related]
7. Au nanoparticles functionalized 3D-MoS Singha SS; Mondal S; Bhattacharya TS; Das L; Sen K; Satpati B; Das K; Singha A Biosens Bioelectron; 2018 Nov; 119():10-17. PubMed ID: 30098461 [TBL] [Abstract][Full Text] [Related]
8. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering. Khalil I; Yehye WA; Julkapli NM; Rahmati S; Sina AA; Basirun WJ; Johan MR Biosens Bioelectron; 2019 Apr; 131():214-223. PubMed ID: 30844598 [TBL] [Abstract][Full Text] [Related]
9. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
10. AuNP-peptide probe for caspase-3 detection in living cells by SERS. Zhao C; Qiu L; Lv P; Han A; Fang G; Liu J; Wang S Analyst; 2019 Feb; 144(4):1275-1281. PubMed ID: 30547173 [TBL] [Abstract][Full Text] [Related]
11. Sensitive and selective SERS probe for trivalent chromium detection using citrate attached gold nanoparticles. Ye Y; Liu H; Yang L; Liu J Nanoscale; 2012 Oct; 4(20):6442-8. PubMed ID: 22955571 [TBL] [Abstract][Full Text] [Related]
12. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma. Kamińska A; Sprynskyy M; Winkler K; Szymborski T Anal Bioanal Chem; 2017 Nov; 409(27):6337-6347. PubMed ID: 28852782 [TBL] [Abstract][Full Text] [Related]
13. A label-free cellulose SERS biosensor chip with improvement of nanoparticle-enhanced LSPR effects for early diagnosis of subarachnoid hemorrhage-induced complications. Kim W; Lee SH; Ahn YJ; Lee SH; Ryu J; Choi SK; Choi S Biosens Bioelectron; 2018 Jul; 111():59-65. PubMed ID: 29649653 [TBL] [Abstract][Full Text] [Related]
14. Detection of Pyocyanin Using a New Biodegradable SERS Biosensor Fabricated Using Gold Coated Zein Nanostructures Further Decorated with Gold Nanoparticles. Jia F; Barber E; Turasan H; Seo S; Dai R; Liu L; Li X; Bhunia AK; Kokini JL J Agric Food Chem; 2019 Apr; 67(16):4603-4610. PubMed ID: 30964288 [TBL] [Abstract][Full Text] [Related]
15. A competitive colorimetric aptasensor transduced by hybridization chain reaction-facilitated catalysis of AuNPs nanozyme for highly sensitive detection of saxitoxin. Zhao Y; Li L; Ma R; Wang L; Yan X; Qi X; Wang S; Mao X Anal Chim Acta; 2021 Aug; 1173():338710. PubMed ID: 34172145 [TBL] [Abstract][Full Text] [Related]
16. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol. Yang K; Hu Y; Dong N Biosens Bioelectron; 2016 Jun; 80():373-377. PubMed ID: 26866562 [TBL] [Abstract][Full Text] [Related]
17. Biocompatible 3D SERS substrate for trace detection of amino acids and melamine. Satheeshkumar E; Karuppaiya P; Sivashanmugan K; Chao WT; Tsay HS; Yoshimura M Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jun; 181():91-97. PubMed ID: 28347923 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the Ag mediated surface-enhanced Raman spectroscopy of saxitoxin. Pearman WF; Angel SM; Ferry JL; Hall S Appl Spectrosc; 2008 Jul; 62(7):727-32. PubMed ID: 18935820 [TBL] [Abstract][Full Text] [Related]
19. An improved surface enhanced Raman spectroscopic method using a paper-based grape skin-gold nanoparticles/graphene oxide substrate for detection of rhodamine 6G in water and food. Sridhar K; Inbaraj BS; Chen BH Chemosphere; 2022 Aug; 301():134702. PubMed ID: 35472615 [TBL] [Abstract][Full Text] [Related]
20. Liquid-liquid interfacial self-assembled Au NP arrays for the rapid and sensitive detection of butyl benzyl phthalate (BBP) by surface-enhanced Raman spectroscopy. Liu J; Li J; Li F; Zhou Y; Hu X; Xu T; Xu W Anal Bioanal Chem; 2018 Aug; 410(21):5277-5285. PubMed ID: 29943263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]