These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 32548791)
1. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Asgari S; Sun L; Lin J; Weng Z; Wu G; Zhang Y; Lin M Mikrochim Acta; 2020 Jun; 187(7):390. PubMed ID: 32548791 [TBL] [Abstract][Full Text] [Related]
2. Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Xiong Z; Lin M; Lin H; Huang M Carbohydr Polym; 2018 Jun; 189():79-86. PubMed ID: 29580429 [TBL] [Abstract][Full Text] [Related]
3. An ultrafast electrochemical synthesis of Au@Ag core-shell nanoflowers as a SERS substrate for thiram detection in milk and juice. Wang J; Luo Z; Lin X Food Chem; 2023 Feb; 402():134433. PubMed ID: 36303364 [TBL] [Abstract][Full Text] [Related]
4. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Wang C; Wu X; Dong P; Chen J; Xiao R Biosens Bioelectron; 2016 Dec; 86():944-950. PubMed ID: 27498319 [TBL] [Abstract][Full Text] [Related]
5. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Pu H; Huang Z; Xu F; Sun DW Food Chem; 2021 May; 343():128548. PubMed ID: 33221103 [TBL] [Abstract][Full Text] [Related]
6. Rapid determination of thiram on apple using a flexible bacterial cellulose-based SERS substrate. Xiao L; Feng S; Hua MZ; Lu X Talanta; 2023 Mar; 254():124128. PubMed ID: 36462280 [TBL] [Abstract][Full Text] [Related]
7. 4-Mercaptobenzoic Acid Labeled Gold-Silver-Alloy-Embedded Silica Nanoparticles as an Internal Standard Containing Nanostructures for Sensitive Quantitative Thiram Detection. Pham XH; Hahm E; Huynh KH; Son BS; Kim HM; Jeong DH; Jun BH Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31569479 [TBL] [Abstract][Full Text] [Related]
8. A general strategy to prepare SERS active filter membranes for extraction and detection of pesticides in water. Fateixa S; Raposo M; Nogueira HIS; Trindade T Talanta; 2018 May; 182():558-566. PubMed ID: 29501193 [TBL] [Abstract][Full Text] [Related]
9. Flexible and transparent Surface Enhanced Raman Scattering (SERS)-Active Ag NPs/PDMS composites for in-situ detection of food contaminants. Alyami A; Quinn AJ; Iacopino D Talanta; 2019 Aug; 201():58-64. PubMed ID: 31122461 [TBL] [Abstract][Full Text] [Related]
10. Core size optimized silver coated gold nanoparticles for rapid screening of tricyclazole and thiram residues in pear extracts using SERS. Hussain N; Pu H; Sun DW Food Chem; 2021 Jul; 350():129025. PubMed ID: 33609938 [TBL] [Abstract][Full Text] [Related]
11. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of flexible SERS substrate based on Au nanostars and PDMS for sensitive detection of Thiram residue in apple juice. Zhang Y; Wang Y; Liu A; Liu S Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122721. PubMed ID: 37054572 [TBL] [Abstract][Full Text] [Related]
13. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Chen J; Huang M; Kong L; Lin M Carbohydr Polym; 2019 Feb; 205():596-600. PubMed ID: 30446146 [TBL] [Abstract][Full Text] [Related]
14. The time-resolved D-SERS vibrational spectra of pesticide thiram. Li P; Liu H; Yang L; Liu J Talanta; 2013 Dec; 117():39-44. PubMed ID: 24209307 [TBL] [Abstract][Full Text] [Related]
15. Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs. Yaseen T; Pu H; Sun DW Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2019 May; 36(5):762-778. PubMed ID: 30943113 [TBL] [Abstract][Full Text] [Related]
16. Green Textile Materials for Surface Enhanced Raman Spectroscopy Identification of Pesticides Using a Raman Handheld Spectrometer for In-Field Detection. Hermsen A; Schoettl J; Hertel F; Cerullo M; Schlueter A; Lehmann CW; Mayer C; Jaeger M Appl Spectrosc; 2022 Oct; 76(10):1222-1233. PubMed ID: 35412371 [TBL] [Abstract][Full Text] [Related]
17. Flexible fabrication of a paper-fluidic SERS sensor coated with a monolayer of core-shell nanospheres for reliable quantitative SERS measurements. Lin S; Lin X; Han S; Liu Y; Hasi W; Wang L Anal Chim Acta; 2020 Apr; 1108():167-176. PubMed ID: 32222238 [TBL] [Abstract][Full Text] [Related]
18. Label-free and ultrasensitive SERS detection of pesticide residues using 3D hot-junction of a Raman enhancing montmorillonite/silver nanoparticles nanocomposite. Zhao X; Sun D; Yu M; Xu Y; Xie H Anal Methods; 2022 Mar; 14(11):1134-1139. PubMed ID: 35224591 [TBL] [Abstract][Full Text] [Related]
19. Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS. Hussain A; Sun DW; Pu H Food Chem; 2020 Jul; 317():126429. PubMed ID: 32109658 [TBL] [Abstract][Full Text] [Related]
20. High-performance homogeneous carboxymethylcellulose-stabilized Au@Ag NRs-CMC surface-enhanced Raman scattering chip for thiram detection in fruits. Hu B; Sun DW; Pu H; Huang Z Food Chem; 2023 Jun; 412():135332. PubMed ID: 36774690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]