BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 32548877)

  • 1. Feasibility and analysis of CNN-based candidate beam generation for robotic radiosurgery.
    Gerlach S; Fürweger C; Hofmann T; Schlaefer A
    Med Phys; 2020 Sep; 47(9):3806-3815. PubMed ID: 32548877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of case-based beam generation for robotic radiosurgery.
    Schlaefer A; Dieterich S
    Artif Intell Med; 2011 Jun; 52(2):67-75. PubMed ID: 21683563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resampling: an optimization method for inverse planning in robotic radiosurgery.
    Schweikard A; Schlaefer A; Adler JR
    Med Phys; 2006 Nov; 33(11):4005-11. PubMed ID: 17153380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shortening treatment time in robotic radiosurgery using a novel node reduction technique.
    van de Water S; Hoogeman MS; Breedveld S; Heijmen BJ
    Med Phys; 2011 Mar; 38(3):1397-405. PubMed ID: 21520851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of four-dimensional conformal planning for robotic radiosurgery.
    Schlaefer A; Fisseler J; Dieterich S; Shiomi H; Cleary K; Schweikard A
    Med Phys; 2005 Dec; 32(12):3786-92. PubMed ID: 16475778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the beam direction search space in computerized non-coplanar beam angle optimization for IMRT-prostate SBRT.
    Rossi L; Breedveld S; Heijmen BJ; Voet PW; Lanconelli N; Aluwini S
    Phys Med Biol; 2012 Sep; 57(17):5441-58. PubMed ID: 22864234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards fast adaptive replanning by constrained reoptimization for intra-fractional non-periodic motion during robotic SBRT.
    Gerlach S; Hofmann T; Fürweger C; Schlaefer A
    Med Phys; 2023 Jul; 50(7):4613-4622. PubMed ID: 36951392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A singular value decomposition linear programming (SVDLP) optimization technique for circular cone based robotic radiotherapy.
    Liang B; Li Y; Wei R; Guo B; Xu X; Liu B; Li J; Wu Q; Zhou F
    Phys Med Biol; 2018 Jan; 63(1):015034. PubMed ID: 29148432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated isocenter optimization approach for treatment planning for gyroscopic radiosurgery.
    Stapper C; Gerlach S; Hofmann T; Fürweger C; Schlaefer A
    Med Phys; 2023 Aug; 50(8):5212-5221. PubMed ID: 37099483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inverse treatment planning for spinal robotic radiosurgery: an international multi-institutional benchmark trial.
    Blanck O; Wang L; Baus W; Grimm J; Lacornerie T; Nilsson J; Luchkovskyi S; Cano IP; Shou Z; Ayadi M; Treuer H; Viard R; Siebert FA; Chan MK; Hildebrandt G; Dunst J; Imhoff D; Wurster S; Wolff R; Romanelli P; Lartigau E; Semrau R; Soltys SG; Schweikard A
    J Appl Clin Med Phys; 2016 May; 17(3):313-330. PubMed ID: 27167291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable circular collimator in robotic radiosurgery: a time-efficient alternative to a mini-multileaf collimator?
    van de Water S; Hoogeman MS; Breedveld S; Nuyttens JJ; Schaart DR; Heijmen BJ
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(3):863-70. PubMed ID: 21377286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel inverse planning optimization algorithm for robotic radiosurgery: First clinical implementation and dosimetric evaluation.
    Zeverino M; Marguet M; Zulliger C; Durham A; Jumeau R; Herrera F; Schiappacasse L; Bourhis J; Bochud FO; Moeckli R
    Phys Med; 2019 Aug; 64():230-237. PubMed ID: 31515024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dosimetric and delivery efficiency investigation for treating hepatic lesions with a MLC-equipped robotic radiosurgery-radiotherapy combined system.
    Jin L; Price RA; Wang L; Meyer J; Fan JJ; Ma CM
    Med Phys; 2016 Feb; 43(2):727-33. PubMed ID: 26843236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guaranteed epsilon-optimal treatment plans with the minimum number of beams for stereotactic body radiation therapy.
    Yarmand H; Winey B; Craft D
    Phys Med Biol; 2013 Sep; 58(17):5931-44. PubMed ID: 23920378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FFF-VMAT for SBRT of lung lesions: Improves dose coverage at tumor-lung interface compared to flattened beams.
    Pokhrel D; Halfman M; Sanford L
    J Appl Clin Med Phys; 2020 Jan; 21(1):26-35. PubMed ID: 31859456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic learning-based beam angle selection for thoracic IMRT.
    Amit G; Purdie TG; Levinshtein A; Hope AJ; Lindsay P; Marshall A; Jaffray DA; Pekar V
    Med Phys; 2015 Apr; 42(4):1992-2005. PubMed ID: 25832090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic ultrasound-guided SBRT of the prostate: feasibility with respect to plan quality.
    Gerlach S; Kuhlemann I; Jauer P; Bruder R; Ernst F; Fürweger C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2017 Jan; 12(1):149-159. PubMed ID: 27406743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing monitor units for robotic radiosurgery by optimized use of multiple collimators.
    Pöll JJ; Hoogeman MS; Prévost JB; Nuyttens JJ; Levendag PC; Heijmen BJ
    Med Phys; 2008 Jun; 35(6):2294-9. PubMed ID: 18649461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous beam geometry and intensity map optimization in intensity-modulated radiation therapy.
    Lee EK; Fox T; Crocker I
    Int J Radiat Oncol Biol Phys; 2006 Jan; 64(1):301-20. PubMed ID: 16289912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AI-based optimization for US-guided radiation therapy of the prostate.
    Gerlach S; Hofmann T; Fürweger C; Schlaefer A
    Int J Comput Assist Radiol Surg; 2022 Nov; 17(11):2023-2032. PubMed ID: 35593988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.