These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32548928)
1. Graphical calibration curves and the integrated calibration index (ICI) for survival models. Austin PC; Harrell FE; van Klaveren D Stat Med; 2020 Sep; 39(21):2714-2742. PubMed ID: 32548928 [TBL] [Abstract][Full Text] [Related]
2. Graphical calibration curves and the integrated calibration index (ICI) for competing risk models. Austin PC; Putter H; Giardiello D; van Klaveren D Diagn Progn Res; 2022 Jan; 6(1):2. PubMed ID: 35039069 [TBL] [Abstract][Full Text] [Related]
3. The Integrated Calibration Index (ICI) and related metrics for quantifying the calibration of logistic regression models. Austin PC; Steyerberg EW Stat Med; 2019 Sep; 38(21):4051-4065. PubMed ID: 31270850 [TBL] [Abstract][Full Text] [Related]
4. Performance metrics for models designed to predict treatment effect. Maas CCHM; Kent DM; Hughes MC; Dekker R; Lingsma HF; van Klaveren D BMC Med Res Methodol; 2023 Jul; 23(1):165. PubMed ID: 37422647 [TBL] [Abstract][Full Text] [Related]
5. Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models. Wang M; Greenberg M; Forkert ND; Chekouo T; Afriyie G; Ismail Z; Smith EE; Sajobi TT BMC Med Res Methodol; 2022 Nov; 22(1):284. PubMed ID: 36324086 [TBL] [Abstract][Full Text] [Related]
6. Using fractional polynomials and restricted cubic splines to model non-proportional hazards or time-varying covariate effects in the Cox regression model. Austin PC; Fang J; Lee DS Stat Med; 2022 Feb; 41(3):612-624. PubMed ID: 34806210 [TBL] [Abstract][Full Text] [Related]
7. Graphical assessment of internal and external calibration of logistic regression models by using loess smoothers. Austin PC; Steyerberg EW Stat Med; 2014 Feb; 33(3):517-35. PubMed ID: 24002997 [TBL] [Abstract][Full Text] [Related]
8. Predicting Colorectal Cancer Survival Using Time-to-Event Machine Learning: Retrospective Cohort Study. Yang X; Qiu H; Wang L; Wang X J Med Internet Res; 2023 Oct; 25():e44417. PubMed ID: 37883174 [TBL] [Abstract][Full Text] [Related]
9. Predictive accuracy of novel risk factors and markers: A simulation study of the sensitivity of different performance measures for the Cox proportional hazards regression model. Austin PC; Pencinca MJ; Steyerberg EW Stat Methods Med Res; 2017 Jun; 26(3):1053-1077. PubMed ID: 25656552 [TBL] [Abstract][Full Text] [Related]
10. [Comparison of prediction ability of two extended Cox models in nonlinear survival data analysis]. Chen Y; Wei H; Pan J; An S Nan Fang Yi Ke Da Xue Xue Bao; 2023 Jan; 43(1):76-84. PubMed ID: 36856213 [TBL] [Abstract][Full Text] [Related]
11. A win ratio approach for comparing crossing survival curves in clinical trials. Zheng S; Wang D; Qiu J; Chen T; Gamalo M J Biopharm Stat; 2023 Jul; 33(4):488-501. PubMed ID: 36749067 [TBL] [Abstract][Full Text] [Related]
12. The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study. Austin PC; Schuster T Stat Methods Med Res; 2016 Oct; 25(5):2214-2237. PubMed ID: 24463885 [TBL] [Abstract][Full Text] [Related]
13. What Is the Effect of Using a Competing-risks Estimator when Predicting Survivorship After Joint Arthroplasty: A Comparison of Approaches to Survivorship Estimation in a Large Registry. Cuthbert AR; Graves SE; Giles LC; Glonek G; Pratt N Clin Orthop Relat Res; 2021 Feb; 479(2):392-403. PubMed ID: 33105301 [TBL] [Abstract][Full Text] [Related]
14. Graphical methods to illustrate the nature of the relation between a continuous variable and the outcome when using restricted cubic splines with a Cox proportional hazards model. Austin PC Stat Methods Med Res; 2024 Oct; ():9622802241287707. PubMed ID: 39431319 [TBL] [Abstract][Full Text] [Related]
15. An R-Based Landscape Validation of a Competing Risk Model. Lin H; Zheng H; Ge C; Ling L; Yin R; Wang Q; Zhang X; Zhou S; Jin X; Xu X; Fu J J Vis Exp; 2022 Sep; (187):. PubMed ID: 36190285 [TBL] [Abstract][Full Text] [Related]
16. Application of random survival forests in understanding the determinants of under-five child mortality in Uganda in the presence of covariates that satisfy the proportional and non-proportional hazards assumption. Nasejje JB; Mwambi H BMC Res Notes; 2017 Sep; 10(1):459. PubMed ID: 28882171 [TBL] [Abstract][Full Text] [Related]
17. [Efficacy of machine learning models Gao K; Wang Y; Cao H; Jia J Nan Fang Yi Ke Da Xue Xue Bao; 2023 Jun; 43(6):952-963. PubMed ID: 37439167 [TBL] [Abstract][Full Text] [Related]
18. Spline-based accelerated failure time model. Pang M; Platt RW; Schuster T; Abrahamowicz M Stat Med; 2021 Jan; 40(2):481-497. PubMed ID: 33105513 [TBL] [Abstract][Full Text] [Related]
19. International Validation of the SORG Machine-learning Algorithm for Predicting the Survival of Patients with Extremity Metastases Undergoing Surgical Treatment. Tseng TE; Lee CC; Yen HK; Groot OQ; Hou CH; Lin SY; Bongers MER; Hu MH; Karhade AV; Ko JC; Lai YH; Yang JJ; Verlaan JJ; Yang RS; Schwab JH; Lin WH Clin Orthop Relat Res; 2022 Feb; 480(2):367-378. PubMed ID: 34491920 [TBL] [Abstract][Full Text] [Related]
20. External validation of a Cox prognostic model: principles and methods. Royston P; Altman DG BMC Med Res Methodol; 2013 Mar; 13():33. PubMed ID: 23496923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]