These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32549299)

  • 1. Assessment of the Number of Valid Observations and Diurnal Changes in Chl-a for GOCI: Highlights for Geostationary Ocean Color Missions.
    Zhao D; Feng L
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32549299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocean color products from the Korean Geostationary Ocean Color Imager (GOCI).
    Wang M; Ahn JH; Jiang L; Shi W; Son S; Park YJ; Ryu JH
    Opt Express; 2013 Feb; 21(3):3835-49. PubMed ID: 23481840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analysis on Diurnal Variation of Chlorophyll-a Concentration of Taihu Lake Based on Optical Classification with GOCI Data].
    Bao Y; Tian QJ; Chen M; Lü CG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Aug; 36(8):2562-7. PubMed ID: 30074364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency and tidal period observations of suspended particulate matter in coastal waters by AHI/Himawari-8.
    Ding X; He X; Bai Y; Zhu Q; Gong F; Li H; Li J
    Opt Express; 2020 Sep; 28(19):27387-27404. PubMed ID: 32988034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote quantification of Cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI).
    Noh JH; Kim W; Son SH; Ahn JH; Park YJ
    Harmful Algae; 2018 Mar; 73():129-137. PubMed ID: 29602501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Qualitative Dynamics of Suspended Particulate Matter in the Changjiang Estuary from Geostationary Ocean Color Images: An Empirical, Regional Modeling Approach.
    Shang D; Xu H
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30501092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrieval of aerosol optical properties from GOCI-II observations: Continuation of long-term geostationary aerosol monitoring over East Asia.
    Lee S; Choi M; Kim J; Park YJ; Choi JK; Lim H; Lee J; Kim M; Cho Y
    Sci Total Environ; 2023 Dec; 903():166504. PubMed ID: 37634717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.
    Wang M; Shi W; Jiang L
    Opt Express; 2012 Jan; 20(2):741-53. PubMed ID: 22274419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vicarious calibration of the Geostationary Ocean Color Imager.
    Ahn JH; Park YJ; Kim W; Lee B; Oh IS
    Opt Express; 2015 Sep; 23(18):23236-58. PubMed ID: 26368426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retrieval of hourly PM
    Choi H; Park S; Kang Y; Im J; Song S
    Environ Pollut; 2023 Apr; 323():121169. PubMed ID: 36773685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classifying diurnal changes of cyanobacterial blooms in Lake Taihu to identify hot patterns, seasons and hotspots based on hourly GOCI observations.
    Wang S; Zhang X; Chen N; Wang W
    J Environ Manage; 2022 May; 310():114782. PubMed ID: 35247688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past.
    Hu C; Feng L; Lee Z; Davis CO; Mannino A; McClain CR; Franz BA
    Appl Opt; 2012 Sep; 51(25):6045-62. PubMed ID: 22945151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometric accuracy analysis of the Geostationary Ocean Color Imager (GOCI) Level 1B (L1B) product.
    Jeong J; Han H; Park Y
    Opt Express; 2020 Mar; 28(5):7634-7653. PubMed ID: 32225987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GOCI image enhancement using an MTF compensation technique for coastal water applications.
    Oh E; Choi JK
    Opt Express; 2014 Nov; 22(22):26908-18. PubMed ID: 25401839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area.
    Qiu Z; Zheng L; Zhou Y; Sun D; Wang S; Wu W
    Opt Express; 2015 Sep; 23(19):A1179-93. PubMed ID: 26406748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of GOCI ocean color products.
    Amin R; Lewis MD; Lawson A; Gould RW; Martinolich P; Li RR; Ladner S; Gallegos S
    Sensors (Basel); 2015 Oct; 15(10):25703-15. PubMed ID: 26473861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ocean color retrieval from MWI onboard the Tiangong-2 Space Lab: preliminary results.
    He X; Bai Y; Wei J; Ding J; Shanmugam P; Wang D; Song Q; Huang X
    Opt Express; 2017 Oct; 25(20):23955-23973. PubMed ID: 29041345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal Variation of Chlorophyll-a Concentrations in Highly Dynamic Waters from Unattended Sensors and Remote Sensing Observations.
    Li J; Tian L; Song Q; Sun Z; Yu H; Xing Q
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30115895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diurnal remote sensing of coastal/oceanic waters: a radiometric analysis for Geostationary Coastal and Air Pollution Events.
    Pahlevan N; Lee Z; Hu C; Schott JR
    Appl Opt; 2014 Feb; 53(4):648-65. PubMed ID: 24514182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tempo-spatial dynamics of water quality and its response to river flow in estuary of Taihu Lake based on GOCI imagery.
    Du C; Li Y; Wang Q; Liu G; Zheng Z; Mu M; Li Y
    Environ Sci Pollut Res Int; 2017 Dec; 24(36):28079-28101. PubMed ID: 28994019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.