BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3254936)

  • 1. Utilization and metabolism of NAD by Haemophilus parainfluenzae.
    Cynamon MH; Sorg TB; Patapow A
    J Gen Microbiol; 1988 Oct; 134(10):2789-99. PubMed ID: 3254936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyridine nucleotide metabolism by extracts derived from Haemophilus parasuis and H. pleuropneumoniae.
    O'Reilly T; Niven DF
    Can J Microbiol; 1986 Sep; 32(9):733-7. PubMed ID: 2946387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleoside salvage pathway for NAD biosynthesis in Salmonella typhimurium.
    Liu G; Foster J; Manlapaz-Ramos P; Olivera BM
    J Bacteriol; 1982 Dec; 152(3):1111-6. PubMed ID: 6216244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridine nucleotide cycle of Salmonella typhimurium: in vitro demonstration of nicotinamide adenine dinucleotide glycohydrolase, nicotinamide mononucleotide glycohydrolase, and nicotinamide adenine dinucleotide pyrophosphatase activities.
    Foster JW
    J Bacteriol; 1981 Feb; 145(2):1002-9. PubMed ID: 6109709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the metabolic and growth responses of porcine haemophili to exogenous pyridine nucleotides and precursors.
    O'Reilly T; Niven DF
    J Gen Microbiol; 1986 Mar; 132(3):807-18. PubMed ID: 2942635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NadN and e (P4) are essential for utilization of NAD and nicotinamide mononucleotide but not nicotinamide riboside in Haemophilus influenzae.
    Kemmer G; Reilly TJ; Schmidt-Brauns J; Zlotnik GW; Green BA; Fiske MJ; Herbert M; Kraiss A; Schlör S; Smith A; Reidl J
    J Bacteriol; 2001 Jul; 183(13):3974-81. PubMed ID: 11395461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinamide mononucleotide adenylyltransferase activity in human erythrocytes.
    Sestini S; Ricci C; Micheli V; Pompucci G
    Arch Biochem Biophys; 1993 Apr; 302(1):206-11. PubMed ID: 8470897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of the pyridine nucleotides involved in nicotinamide adenine dinucleotide biosynthesis by Clostridium butylicum.
    Kasărov LB; Moat AG
    J Bacteriol; 1973 Jul; 115(1):35-42. PubMed ID: 4352177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversal of endothelial dysfunction by nicotinamide mononucleotide via extracellular conversion to nicotinamide riboside.
    Mateuszuk Ł; Campagna R; Kutryb-Zając B; Kuś K; Słominska EM; Smolenski RT; Chlopicki S
    Biochem Pharmacol; 2020 Aug; 178():114019. PubMed ID: 32389638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies of NAD kinase and NMN:ATP adenylyltransferase in Haemophilus influenzae.
    Denicola-Seoane A; Anderson BM
    J Gen Microbiol; 1990 Mar; 136(3):425-30. PubMed ID: 2167921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide.
    Foster JW; Kinney DM; Moat AG
    J Bacteriol; 1979 Mar; 137(3):1165-75. PubMed ID: 220211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of niacin and niacinamide in perfused rat intestine.
    Henderson LM; Gross CJ
    J Nutr; 1979 Apr; 109(4):654-62. PubMed ID: 34678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porin OmpP2 of Haemophilus influenzae shows specificity for nicotinamide-derived nucleotide substrates.
    Andersen C; Maier E; Kemmer G; Blass J; Hilpert AK; Benz R; Reidl J
    J Biol Chem; 2003 Jul; 278(27):24269-76. PubMed ID: 12695515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Haemin and nicotinamide adenine dinucleotide requirements of Haemophilus influenzae and Haemophilus parainfluenzae.
    Evans NM; Smith DD; Wicken AJ
    J Med Microbiol; 1974 Aug; 7(3):359-65. PubMed ID: 4371115
    [No Abstract]   [Full Text] [Related]  

  • 15. Degradation of Extracellular NAD
    Kulikova V; Shabalin K; Nerinovski K; Yakimov A; Svetlova M; Solovjeva L; Kropotov A; Khodorkovskiy M; Migaud ME; Ziegler M; Nikiforov A
    Metabolites; 2019 Nov; 9(12):. PubMed ID: 31795381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and Functional Characterization of NadR from
    Stetsenko A; Singh R; Jaehme M; Guskov A; Slotboom DJ
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32331317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivation of NAD(H) biosynthetic pathway by exogenous NAD+ in Nil cells severely depleted of NAD(H).
    Mandel KG; Lively MK; Lombardi D; Amos H
    J Cell Physiol; 1983 Feb; 114(2):235-44. PubMed ID: 6218178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naturally occurring NAD-independent Haemophilus parainfluenzae.
    Gromkova R; Koornhof H
    J Gen Microbiol; 1990 Jun; 136(6):1031-5. PubMed ID: 2384741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic analysis of the transglycosidation reaction catalyzed by rabbit spleen pyridine nucleotide glycohydrolase.
    Imai T
    J Biochem; 1989 Nov; 106(5):938-48. PubMed ID: 2613698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxyapatite-based nano-drug delivery system for nicotinamide mononucleotide (NMN): significantly enhancing NMN bioavailability and replenishing in vivo nicotinamide adenine dinucleotide (NAD+) levels.
    Zhang D; Yau LF; Bai LB; Tong TT; Cao KY; Yan TM; Zeng L; Jiang ZH
    J Pharm Pharmacol; 2023 Dec; 75(12):1569-1580. PubMed ID: 37862582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.