These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32549387)

  • 21. Mastering of Filled Rubber Strength beyond WLF: Competition of Temperature, Time, Crack Deflection and Bond Breaking.
    Plagge J
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The recovery of nano-sized carbon black filler structure and its contribution to stress recovery in rubber nanocomposites.
    Chen L; Wu L; Song L; Xia Z; Lin Y; Chen W; Li L
    Nanoscale; 2020 Dec; 12(48):24527-24542. PubMed ID: 33320147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the Strain Rate on Damage in Filled EPDM during Single and Cyclic Loadings.
    Candau N; Oguz O; Peuvrel-Disdier E; Bouvard JL; Maspoch ML; Corvec G; Pradille C; Billon N
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33348679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement.
    Liu J; Wu S; Zhang L; Wang W; Cao D
    Phys Chem Chem Phys; 2011 Jan; 13(2):518-29. PubMed ID: 21052606
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural dynamics and interfacial properties of filler-reinforced elastomers.
    Fritzsche J; Klüppel M
    J Phys Condens Matter; 2011 Jan; 23(3):035104. PubMed ID: 21406859
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of sliding friction and contact mechanics of elastomers based on dynamic-mechanical analysis.
    Le Gal A; Yang X; Klüppel M
    J Chem Phys; 2005 Jul; 123(1):014704. PubMed ID: 16035860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strain Hardening of Polypropylene Microfiber Reinforced Composite Based on Alkali-Activated Slag Matrix.
    Smirnova OM; Menendez Pidal I; Alekseev AV; Petrov DN; Popov MG
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel features of the Mullins effect in filled elastomers revealed by stretching measurements in various geometries.
    Mai TT; Morishita Y; Urayama K
    Soft Matter; 2017 Mar; 13(10):1966-1977. PubMed ID: 28155954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphology and viscoelastic properties of sealing materials based on EPDM rubber.
    Milić J; Aroguz A; Budinski-Simendić J; Radicević R; Prendzov S
    J Microsc; 2008 Dec; 232(3):580-4. PubMed ID: 19094042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Filled Elastomers: Mechanistic and Physics-Driven Modeling and Applications as Smart Materials.
    Xian W; Zhan YS; Maiti A; Saab AP; Li Y
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanical properties of glass-ceramic A-W-polyethylene composites: effect of filler content and particle size.
    Juhasz JA; Best SM; Brooks R; Kawashita M; Miyata N; Kokubo T; Nakamura T; Bonfield W
    Biomaterials; 2004 Mar; 25(6):949-55. PubMed ID: 14615158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal Oxidative Aging and Service Life Prediction of Commercial Ethylene-Propylene-Diene Monomer Spacer Damping Composites for High-Voltage Transmission Lines.
    Zhou Y; Qiu L; Xu Z; Huang S; Nie J; Yin H; Tu F; Zhao Z
    Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Poultry Feather Waste as Bio-Based Cross-Linking Additive for Ethylene Propylene Diene Rubber.
    Brenner M; Weichold O
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling the Full Time-Dependent Phenomenology of Filled Rubber for Use in Anti-Vibration Design.
    Carleo F; Plagge J; Whear R; Busfield J; Klüppel M
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32268613
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stretching-Induced 2D-to-3D Shape Transformation of an Elastic Composite for Sensitivity-Tailorable Soft Electronics.
    Cui X; Dang M; Jiang J; Liu ZT; Liu ZW; Li G
    ACS Appl Mater Interfaces; 2023 Nov; 15(44):51846-51853. PubMed ID: 37874133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon black networking in elastomers monitored by simultaneous rheological and dielectric investigations.
    Steinhauser D; Möwes M; Klüppel M
    J Phys Condens Matter; 2016 Dec; 28(49):495103. PubMed ID: 27736805
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite.
    Robertson CG; Hardman NJ
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33673094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A pseudo-anelastic model for stress softening in liquid crystal elastomers.
    Angela Mihai L; Goriely A
    Proc Math Phys Eng Sci; 2020 Nov; 476(2243):20200558. PubMed ID: 33362420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural Aging of Ethylene-Propylene-Diene Rubber under Actual Operation Conditions of Electrical Submersible Pump Cables.
    Rojas Rodríguez FI; d'Almeida Moraes JR; Marinkovic BA
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature Dependence of Rubber Hyper-Elasticity Based on Different Constitutive Models and Their Prediction Ability.
    Yao X; Wang Z; Ma L; Miao Z; Su M; Han X; Yang J
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.