BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 32549394)

  • 1. Kinetic Analysis of 4-Nitrophenol Reduction by "Water-Soluble" Palladium Nanoparticles.
    Iben Ayad A; Luart D; Ould Dris A; Guénin E
    Nanomaterials (Basel); 2020 Jun; 10(6):. PubMed ID: 32549394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes.
    Gu S; Lu Y; Kaiser J; Albrecht M; Ballauff M
    Phys Chem Chem Phys; 2015 Nov; 17(42):28137-43. PubMed ID: 25790094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic investigation for the catalytic reduction of nitrophenol using ionic liquid stabilized gold nanoparticles.
    Thawarkar SR; Thombare B; Munde BS; Khupse ND
    RSC Adv; 2018 Nov; 8(67):38384-38390. PubMed ID: 35559095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4-nitrophenol according to the Langmuir-Hinshelwood approach.
    Antonels NC; Meijboom R
    Langmuir; 2013 Nov; 29(44):13433-42. PubMed ID: 24087990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-Dependent Catalytic Activity of PVA-Stabilized Palladium Nanoparticles in
    Chatterjee S; Bhattacharya SK
    ACS Omega; 2021 Aug; 6(32):20746-20757. PubMed ID: 34423183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic reduction-adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon.
    Guo P; Tang L; Tang J; Zeng G; Huang B; Dong H; Zhang Y; Zhou Y; Deng Y; Ma L; Tan S
    J Colloid Interface Sci; 2016 May; 469():78-85. PubMed ID: 26871277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasi-HKUST Prepared via Postsynthetic Defect Engineering for Highly Improved Catalytic Conversion of 4-Nitrophenol.
    Bagheri M; Melillo A; Ferrer B; Masoomi MY; Garcia H
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):978-989. PubMed ID: 34970910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Effects of Gold-Palladium Nanoalloys and Reducible Supports on the Catalytic Reduction of 4-Nitrophenol.
    Bingwa N; Patala R; Noh JH; Ndolomingo MJ; Tetyana S; Bewana S; Meijboom R
    Langmuir; 2017 Jul; 33(28):7086-7095. PubMed ID: 28648075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent effects on the kinetics of 4-nitrophenol reduction by NaBH
    Lomonosov V; Asselin J; Ringe E
    React Chem Eng; 2022 Jul; 7(8):1728-1741. PubMed ID: 35966409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Langmuir-Hinshelwood approach for kinetic evaluation of cucurbit[7]uril-capped gold nanoparticles in the reduction of the antimicrobial nitrofurantoin.
    Blanco E; Atienzar P; Hernández P; Quintana C
    Phys Chem Chem Phys; 2017 Jul; 19(29):18913-18923. PubMed ID: 28715032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoflakes-like nickel cobaltite as active electrode material for 4-nitrophenol reduction and supercapacitor applications.
    Hunge YM; Yadav AA; Kang SW; Kim H; Fujishima A; Terashima C
    J Hazard Mater; 2021 Oct; 419():126453. PubMed ID: 34323738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Competition between 4-Nitrophenol Reduction and BH
    Varshney S; Meyerstein D; Bar-Ziv R; Zidki T
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P-aminophenol catalysed production on supported nano-magnetite particles in fixed-bed reactor: Kinetic modelling and scale-up.
    Vilardi G
    Chemosphere; 2020 Jul; 250():126237. PubMed ID: 32088618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of novel methacrylate based adsorbents and their sorptive properties towards p-nitrophenol from aqueous solutions.
    Erdem M; Yüksel E; Tay T; Cimen Y; Türk H
    J Colloid Interface Sci; 2009 May; 333(1):40-8. PubMed ID: 19217119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol.
    Narayanan KB; Sakthivel N
    J Hazard Mater; 2011 May; 189(1-2):519-25. PubMed ID: 21420237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile green synthesis of a novel NiO and its catalytic effect on methylene blue photocatalytic reduction and sodium borohydride hydrolysis.
    Baytar O
    Int J Phytoremediation; 2024 Apr; ():1-16. PubMed ID: 38634226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size dependent catalysis with CTAB-stabilized gold nanoparticles.
    Fenger R; Fertitta E; Kirmse H; Thünemann AF; Rademann K
    Phys Chem Chem Phys; 2012 Jul; 14(26):9343-9. PubMed ID: 22549475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction.
    Berillo D; Cundy A
    Carbohydr Polym; 2018 Jul; 192():166-175. PubMed ID: 29691009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Au-Pd bimetallic nanoparticles embedded highly porous Fenugreek polysaccharide based micro networks for catalytic applications.
    Mallikarjuna K; Bathula C; Dinneswara Reddy G; Shrestha NK; Kim H; Noh YY
    Int J Biol Macromol; 2019 Apr; 126():352-358. PubMed ID: 30572053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palladium nanoparticles decorated on amine functionalized graphene nanosheets as excellent nanocatalyst for the hydrogenation of nitrophenols to aminophenol counterparts.
    Soğukömeroğulları HG; Karataş Y; Celebi M; Gülcan M; Sönmez M; Zahmakiran M
    J Hazard Mater; 2019 May; 369():96-107. PubMed ID: 30776607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.