These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 32549408)
1. Mining for Candidate Genes Controlling Secondary Growth of the Carrot Storage Root. Macko-Podgórni A; Stelmach K; Kwolek K; Machaj G; Ellison S; Senalik DA; Simon PW; Grzebelus D Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32549408 [TBL] [Abstract][Full Text] [Related]
2. Dissecting the genetic control of root and leaf tissue-specific anthocyanin pigmentation in carrot (Daucus carota L.). Bannoud F; Ellison S; Paolinelli M; Horejsi T; Senalik D; Fanzone M; Iorizzo M; Simon PW; Cavagnaro PF Theor Appl Genet; 2019 Sep; 132(9):2485-2507. PubMed ID: 31144001 [TBL] [Abstract][Full Text] [Related]
3. Characteristics of the Machaj G; Grzebelus D Genes (Basel); 2021 May; 12(5):. PubMed ID: 34069875 [TBL] [Abstract][Full Text] [Related]
4. New insights into domestication of carrot from root transcriptome analyses. Rong J; Lammers Y; Strasburg JL; Schidlo NS; Ariyurek Y; de Jong TJ; Klinkhamer PG; Smulders MJ; Vrieling K BMC Genomics; 2014 Oct; 15(1):895. PubMed ID: 25311557 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome-based identification of genes revealed differential expression profiles and lignin accumulation during root development in cultivated and wild carrots. Wang GL; Huang Y; Zhang XY; Xu ZS; Wang F; Xiong AS Plant Cell Rep; 2016 Aug; 35(8):1743-55. PubMed ID: 27160835 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide identification, expansion, and evolution analysis of homeobox genes and their expression profiles during root development in carrot. Que F; Wang GL; Li T; Wang YH; Xu ZS; Xiong AS Funct Integr Genomics; 2018 Nov; 18(6):685-700. PubMed ID: 29909521 [TBL] [Abstract][Full Text] [Related]
7. A de novo transcriptome analysis revealed that photomorphogenic genes are required for carotenoid synthesis in the dark-grown carrot taproot. Arias D; Maldonado J; Silva H; Stange C Mol Genet Genomics; 2020 Nov; 295(6):1379-1392. PubMed ID: 32656704 [TBL] [Abstract][Full Text] [Related]
8. Differential role of the two ζ-carotene desaturase paralogs in carrot (Daucus carota): ZDS1 is a functional gene essential for plant development and carotenoid synthesis. Flores-Ortiz C; Alvarez LM; Undurraga A; Arias D; Durán F; Wegener G; Stange C Plant Sci; 2020 Feb; 291():110327. PubMed ID: 31928663 [TBL] [Abstract][Full Text] [Related]
9. Sequencing, assembly, annotation, and gene expression: novel insights into the hormonal control of carrot root development revealed by a high-throughput transcriptome. Wang GL; Jia XL; Xu ZS; Wang F; Xiong AS Mol Genet Genomics; 2015 Aug; 290(4):1379-91. PubMed ID: 25666462 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Ma J; Li J; Xu Z; Wang F; Xiong A Acta Biochim Biophys Sin (Shanghai); 2018 May; 50(5):481-490. PubMed ID: 29617714 [TBL] [Abstract][Full Text] [Related]
12. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. Wang GL; Que F; Xu ZS; Wang F; Xiong AS BMC Plant Biol; 2015 Dec; 15():290. PubMed ID: 26667233 [TBL] [Abstract][Full Text] [Related]
13. Expression of carotenoid biosynthesis genes during carrot root development. Clotault J; Peltier D; Berruyer R; Thomas M; Briard M; Geoffriau E J Exp Bot; 2008; 59(13):3563-73. PubMed ID: 18757491 [TBL] [Abstract][Full Text] [Related]
14. Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. Xu ZS; Huang Y; Wang F; Song X; Wang GL; Xiong AS BMC Plant Biol; 2014 Oct; 14():262. PubMed ID: 25269413 [TBL] [Abstract][Full Text] [Related]
15. The influence of the Or and Carotene Hydroxylase genes on carotenoid accumulation in orange carrots [Daucus carota (L.)]. Coe KM; Ellison S; Senalik D; Dawson J; Simon P Theor Appl Genet; 2021 Oct; 134(10):3351-3362. PubMed ID: 34282485 [TBL] [Abstract][Full Text] [Related]
16. A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. Cavagnaro PF; Iorizzo M; Yildiz M; Senalik D; Parsons J; Ellison S; Simon PW BMC Genomics; 2014 Dec; 15(1):1118. PubMed ID: 25514876 [TBL] [Abstract][Full Text] [Related]
17. The genetic control of polyacetylenes involved in bitterness of carrots (Daucus carota L.): Identification of QTLs and candidate genes from the plant fatty acid metabolism. Dunemann F; He W; Böttcher C; Reichardt S; Nothnagel T; Heuvelmans P; Hermans F BMC Plant Biol; 2022 Mar; 22(1):92. PubMed ID: 35232393 [TBL] [Abstract][Full Text] [Related]
18. Expression profiles of genes involved in jasmonic acid biosynthesis and signaling during growth and development of carrot. Wang G; Huang W; Li M; Xu Z; Wang F; Xiong A Acta Biochim Biophys Sin (Shanghai); 2016 Sep; 48(9):795-803. PubMed ID: 27325823 [TBL] [Abstract][Full Text] [Related]
19. Fine Mapping, Transcriptome Analysis, and Marker Development for Ellison S; Senalik D; Bostan H; Iorizzo M; Simon P G3 (Bethesda); 2017 Aug; 7(8):2665-2675. PubMed ID: 28663343 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a Genomic Region under Selection in Cultivated Carrot ( Macko-Podgórni A; Machaj G; Stelmach K; Senalik D; Grzebelus E; Iorizzo M; Simon PW; Grzebelus D Front Plant Sci; 2017; 8():12. PubMed ID: 28149306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]