These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32549428)

  • 1. Sub-kHz-linewidth VECSELs for cold atom experiments.
    Moriya PH; Singh Y; Bongs K; Hastie JE
    Opt Express; 2020 May; 28(11):15943-15953. PubMed ID: 32549428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low phase noise operation of a cavity-stabilized 698 nm AlGaInP-based VECSEL.
    Moriya PH; Lee M; Hastie JE
    Opt Express; 2023 Aug; 31(17):28018-28025. PubMed ID: 37710865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. InGaN-diode-pumped AlGaInP VECSEL with sub-kHz linewidth at 689 nm.
    Moriya PH; Casula R; Chappell GA; Parrotta DC; Ranta S; Kahle H; Guina M; Hastie JE
    Opt Express; 2021 Feb; 29(3):3258-3268. PubMed ID: 33770928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilizing a laser frequency by the Pound-Drever-Hall technique with an acousto-optic modulator.
    Zeng Y; Fu Z; Liu YY; He XD; Liu M; Xu P; Sun XH; Wang J
    Appl Opt; 2021 Feb; 60(5):1159-1163. PubMed ID: 33690545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monolithic VECSEL for stable kHz linewidth.
    Lee M; Moriya PH; Hastie JE
    Opt Express; 2023 Nov; 31(23):38786-38797. PubMed ID: 38017974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity.
    Lewoczko-Adamczyk W; Pyrlik C; Häger J; Schwertfeger S; Wicht A; Peters A; Erbert G; Tränkle G
    Opt Express; 2015 Apr; 23(8):9705-9. PubMed ID: 25969008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable narrow linewidth AlGaInP semiconductor disk laser for Sr atom cooling applications.
    Pabœuf D; Hastie JE
    Appl Opt; 2016 Jul; 55(19):4980-4. PubMed ID: 27409180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrow linewidth 578 nm light generation using frequency-doubling with a waveguide PPLN pumped by an optical injection-locked diode laser.
    Kim EB; Lee WK; Park CY; Yu DH; Park SE
    Opt Express; 2010 May; 18(10):10308-14. PubMed ID: 20588885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser.
    Wang C; Lv S; Liu F; Bi J; Li L; Chen L
    Rev Sci Instrum; 2014 Aug; 85(8):083113. PubMed ID: 25173252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demonstration of a passive subpicostrain fiber strain sensor.
    Chow JH; McClelland DE; Gray MB; Littler IC
    Opt Lett; 2005 Aug; 30(15):1923-5. PubMed ID: 16092220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-cavity frequency-doubled VECSEL system for narrow linewidth Rydberg EIT spectroscopy.
    Hill JC; Holland WK; Kunz PD; Cox KC; Penttinen JP; Kantola E; Meyer DH
    Opt Express; 2022 Nov; 30(23):41408-41421. PubMed ID: 36366620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly integrated single-mode 1064 nm laser with 8.5 kHz linewidth for dual-wavelength active optical clock.
    Shi T; Pan D; Chang P; Shang H; Chen J
    Rev Sci Instrum; 2018 Apr; 89(4):043102. PubMed ID: 29716323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of a highly stable 10  GHz optical frequency comb with low timing jitter from a SCOWA-based harmonically mode-locked nested cavity laser.
    Bagnell K; Klee A; Delfyett PJ; Plant JJ; Juodawlkis PW
    Opt Lett; 2018 May; 43(10):2396-2399. PubMed ID: 29762601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-amplified lock of an ultra-narrow linewidth optical cavity.
    Izumi K; Sigg D; Barsotti L
    Opt Lett; 2014 Sep; 39(18):5285-8. PubMed ID: 26466252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line.
    Kéfélian F; Jiang H; Lemonde P; Santarelli G
    Opt Lett; 2009 Apr; 34(7):914-6. PubMed ID: 19340169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microresonator-stabilized extended-cavity diode laser for supercavity frequency stabilization.
    Lim J; Savchenkov AA; Matsko AB; Huang SW; Maleki L; Wong CW
    Opt Lett; 2017 Apr; 42(7):1249-1252. PubMed ID: 28362741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red narrow-linewidth lasing and frequency comb from gain-switched self-injection-locked Fabry-Pérot laser diode.
    Shitikov AE; Galiev RR; Min'kov KN; Kondratiev NM; Cordette SJ; Lobanov VE; Bilenko IA
    Sci Rep; 2023 Jun; 13(1):9830. PubMed ID: 37330585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Pérot interferometer.
    Bahoura M; Clairon A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1414-21. PubMed ID: 14682624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1.5μm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of -130 dB/Hz and its extension to the L-band.
    Kasai K; Nakazawa M; Tomomatsu Y; Endo T
    Opt Express; 2017 Sep; 25(18):22113-22124. PubMed ID: 29041500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si
    Spencer DT; Davenport ML; Komljenovic T; Srinivasan S; Bowers JE
    Opt Express; 2016 Jun; 24(12):13511-7. PubMed ID: 27410367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.