These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32549468)

  • 21. Polarization-driven self-organization of silver nanoparticles in 1D and 2D subwavelength gratings for plasmonic photocatalysis.
    Baraldi G; Bakhti S; Liu Z; Reynaud S; Lefkir Y; Vocanson F; Destouches N
    Nanotechnology; 2017 Jan; 28(3):035302. PubMed ID: 27966465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photolithography-Based Nanopatterning Using Re-entrant Photoresist Profile.
    Kim TJ; Jung YH; Zhang H; Kim K; Lee J; Ma Z
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8117-8123. PubMed ID: 29345131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laser Interference Lithography-A Method for the Fabrication of Controlled Periodic Structures.
    Liu R; Cao L; Liu D; Wang L; Saeed S; Wang Z
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368248
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetric diffraction from two-component optical gratings made of passive and lossy materials.
    Liang G; Abouraddy A; Christodoulides D; Thomas EL
    Opt Express; 2016 Dec; 24(26):30164-30172. PubMed ID: 28059293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled angular redirection of light via nanoimprinted disordered gratings.
    Buß T; Teisseire J; Mazoyer S; Smith CL; Mikkelsen MB; Kristensen A; Søndergård E
    Appl Opt; 2013 Feb; 52(4):709-16. PubMed ID: 23385910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development in situ for gratings recorded in photoresist.
    Rayas JA; Martínez A; Rodríguez-Vera R; Calixto S
    Appl Opt; 2003 Dec; 42(34):6877-9. PubMed ID: 14661798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of multiple theories for the simulation of laser interference lithography processes.
    Lin TH; Yang YK; Fu CC
    Nanotechnology; 2017 Nov; 28(47):475301. PubMed ID: 28936985
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The perception of movement and depth in moiré patterns.
    Spillmann L
    Perception; 1993; 22(3):287-308. PubMed ID: 8316516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual Imprinted Polymer Thin Films via Pattern Directed Self-Organization.
    Grolman D; Bandyopadhyay D; Al-Enizi A; Elzatahry A; Karim A
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20928-20937. PubMed ID: 28562002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Printable Nanophotonic Devices via Holographic Laser Ablation.
    Zhao Q; Yetisen AK; Sabouri A; Yun SH; Butt H
    ACS Nano; 2015 Sep; 9(9):9062-9. PubMed ID: 26301907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography.
    Wu J; Geng Z; Xie Y; Fan Z; Su Y; Xu C; Chen H
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30621058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of diffraction gratings by top-down and bottom-up approaches based on scanning probe lithography.
    Yang MS; Song C; Choi J; Jo JS; Choi JH; Moon BK; Noh H; Jang JW
    Nanoscale; 2019 Jan; 11(5):2326-2334. PubMed ID: 30663755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design methodology for moiré magnifier based on micro-focusing elements.
    Zheng W; Shen S; Gao Y; Liu N; Liu Y
    Opt Express; 2017 Dec; 25(25):31746-31757. PubMed ID: 29245850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diffraction from metallic gratings with locally varying profile forms.
    Tompkin WR; Staub R; Schilling A; Herzig HP
    Opt Lett; 1999 Jan; 24(2):71-3. PubMed ID: 18071411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Closely packed and aspect-ratio-controlled antireflection subwavelength gratings on GaAs using a lenslike shape transfer.
    Song YM; Bae SY; Yu JS; Lee YT
    Opt Lett; 2009 Jun; 34(11):1702-4. PubMed ID: 19488154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical feasibility study of the fabrication of subwavelength structure by mask lithography.
    Ichikawa H; Kikuta H
    J Opt Soc Am A Opt Image Sci Vis; 2001 May; 18(5):1093-100. PubMed ID: 11336212
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanopatterning by laser interference lithography: applications to optical devices.
    Seo JH; Park JH; Kim SI; Park BJ; Ma Z; Choi J; Ju BK
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1521-32. PubMed ID: 24749439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond laser ablation of transparent microphotonic devices and computer-generated holograms.
    Alqurashi T; Montelongo Y; Penchev P; Yetisen AK; Dimov S; Butt H
    Nanoscale; 2017 Sep; 9(36):13808-13819. PubMed ID: 28891581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of diffraction based security elements using direct laser interference patterning.
    Rößler F; Kunze T; Lasagni AF
    Opt Express; 2017 Sep; 25(19):22959-22970. PubMed ID: 29041601
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep subwavelength interference lithography with tunable pattern period based on bulk plasmon polaritons.
    Liu H; Kong W; Liu K; Zhao C; Du W; Wang C; Liu L; Gao P; Pu M; Luo X
    Opt Express; 2017 Aug; 25(17):20511-20521. PubMed ID: 29041731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.