These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32550099)

  • 1. Optimization of the l-tyrosine metabolic pathway in
    Li Y; Mao J; Song X; Wu Y; Cai M; Wang H; Liu Q; Zhang X; Bai Y; Xu H; Qiao M
    3 Biotech; 2020 Jun; 10(6):258. PubMed ID: 32550099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis.
    Rodriguez A; Kildegaard KR; Li M; Borodina I; Nielsen J
    Metab Eng; 2015 Sep; 31():181-8. PubMed ID: 26292030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Construction and optimization of p-coumaric acid-producing Saccharomyces cerevisiae].
    Zhang S; Zhou J; Zhang G; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2020 Sep; 36(9):1838-1848. PubMed ID: 33164460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial analysis of enzymatic bottlenecks of L-tyrosine pathway by p-coumaric acid production in Saccharomyces cerevisiae.
    Mao J; Liu Q; Song X; Wang H; Feng H; Xu H; Qiao M
    Biotechnol Lett; 2017 Jul; 39(7):977-982. PubMed ID: 28299546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution and Optimization of the Marmesin Biosynthetic Pathway in Yeast.
    Wang Z; Zhou Y; Wang Y; Yan X
    ACS Synth Biol; 2023 Oct; 12(10):2922-2933. PubMed ID: 37767718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative transcriptome analysis of genomic region deletion strain with enhanced L-tyrosine production in Saccharomyces cerevisiae.
    Wu Y; Cai M; Song X; Li Y; Wang H; Mao J; Liu Q; Xu H; Qiao M
    Biotechnol Lett; 2020 Mar; 42(3):453-460. PubMed ID: 31863218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo resveratrol production through modular engineering of an Escherichia coli-Saccharomyces cerevisiae co-culture.
    Yuan SF; Yi X; Johnston TG; Alper HS
    Microb Cell Fact; 2020 Jul; 19(1):143. PubMed ID: 32664999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.
    Koopman F; Beekwilder J; Crimi B; van Houwelingen A; Hall RD; Bosch D; van Maris AJ; Pronk JT; Daran JM
    Microb Cell Fact; 2012 Dec; 11():155. PubMed ID: 23216753
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Liu Y; Liu H; Hu H; Ng KR; Yang R; Lyu X
    J Agric Food Chem; 2022 Jun; 70(24):7490-7499. PubMed ID: 35649155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: quantification of metabolic impact.
    Luttik MA; Vuralhan Z; Suir E; Braus GH; Pronk JT; Daran JM
    Metab Eng; 2008; 10(3-4):141-53. PubMed ID: 18372204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae.
    Reifenrath M; Boles E
    Metab Eng; 2018 Jan; 45():246-254. PubMed ID: 29330068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elimination of aromatic fusel alcohols as by-products of
    Hassing EJ; Buijs J; Blankerts N; Luttik MA; Hulster EA; Pronk JT; Daran JM
    Metab Eng Commun; 2021 Dec; 13():e00183. PubMed ID: 34584841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae.
    Vuralhan Z; Morais MA; Tai SL; Piper MD; Pronk JT
    Appl Environ Microbiol; 2003 Aug; 69(8):4534-41. PubMed ID: 12902239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Directed evolution of tyrosine ammonia-lyase to improve the production of p-coumaric acid in Escherichia coli].
    Huo Y; Wu F; Song G; Tu R; Chen W; Hua E; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2020 Nov; 36(11):2367-2376. PubMed ID: 33244931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Characterization of highly active tyrosine ammonia lyase and its application in biosynthesis of
    Huang Y; Jiang X; Chen W; Zhang G; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4553-4566. PubMed ID: 36593193
    [No Abstract]   [Full Text] [Related]  

  • 18. Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose.
    Borja GM; Rodriguez A; Campbell K; Borodina I; Chen Y; Nielsen J
    Microb Cell Fact; 2019 Nov; 18(1):191. PubMed ID: 31690329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial synthesis of the plant natural product precursor p-coumaric acid with Corynebacterium glutamicum.
    Mutz M; Kösters D; Wynands B; Wierckx N; Marienhagen J
    Microb Cell Fact; 2023 Oct; 22(1):209. PubMed ID: 37833813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production.
    Reifenrath M; Bauer M; Oreb M; Boles E
    Metab Eng Commun; 2018 Dec; 7():e00079. PubMed ID: 30370221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.