BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32550271)

  • 1. MATCHA: Probing multi-way chromatin interaction with hypergraph representation learning.
    Zhang R; Ma J
    Cell Syst; 2020 May; 10(5):397-407.e5. PubMed ID: 32550271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks.
    Thibodeau A; Márquez EJ; Luo O; Ruan Y; Menghi F; Shin DG; Stitzel ML; Vera-Licona P; Ucar D
    PLoS Comput Biol; 2016 Jun; 12(6):e1004809. PubMed ID: 27336171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MIA-Sig: multiplex chromatin interaction analysis by signal processing and statistical algorithms.
    Kim M; Zheng M; Tian SZ; Lee B; Chuang JH; Ruan Y
    Genome Biol; 2019 Nov; 20(1):251. PubMed ID: 31767038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interpretable online network dictionary learning for inferring long-range chromatin interactions.
    Rana V; Peng J; Pan C; Lyu H; Cheng A; Kim M; Milenkovic O
    PLoS Comput Biol; 2024 May; 20(5):e1012095. PubMed ID: 38753877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments.
    Juric I; Yu M; Abnousi A; Raviram R; Fang R; Zhao Y; Zhang Y; Qiu Y; Yang Y; Li Y; Ren B; Hu M
    PLoS Comput Biol; 2019 Apr; 15(4):e1006982. PubMed ID: 30986246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ChIAPoP: a new tool for ChIA-PET data analysis.
    Huang W; Medvedovic M; Zhang J; Niu L
    Nucleic Acids Res; 2019 Apr; 47(7):e37. PubMed ID: 30753588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IDR2D identifies reproducible genomic interactions.
    Krismer K; Guo Y; Gifford DK
    Nucleic Acids Res; 2020 Apr; 48(6):e31. PubMed ID: 32009147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Study of Supervised Machine Learning Algorithms for the Prediction of Long-Range Chromatin Interactions.
    Vanhaeren T; Divina F; García-Torres M; Gómez-Vela F; Vanhoof W; Martínez-García PM
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32847102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HiBrowse: multi-purpose statistical analysis of genome-wide chromatin 3D organization.
    Paulsen J; Sandve GK; Gundersen S; Lien TG; Trengereid K; Hovig E
    Bioinformatics; 2014 Jun; 30(11):1620-2. PubMed ID: 24511080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does multi-way, long-range chromatin contact data advance 3D genome reconstruction?
    Olshen AB; Segal MR
    BMC Bioinformatics; 2023 Feb; 24(1):64. PubMed ID: 36829114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for comparative ChIA-PET and Hi-C data analysis.
    Capurso D; Tang Z; Ruan Y
    Methods; 2020 Jan; 170():69-74. PubMed ID: 31629084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing.
    Li G; Fullwood MJ; Xu H; Mulawadi FH; Velkov S; Vega V; Ariyaratne PN; Mohamed YB; Ooi HS; Tennakoon C; Wei CL; Ruan Y; Sung WK
    Genome Biol; 2010; 11(2):R22. PubMed ID: 20181287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EpiMCI: Predicting Multi-Way Chromatin Interactions from Epigenomic Signals.
    Xu J; Zhang P; Sun W; Zhang J; Zhang W; Hou C; Li L
    Biology (Basel); 2023 Sep; 12(9):. PubMed ID: 37759602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregated network centrality shows non-random structure of genomic and proteomic networks.
    Halder AK; Denkiewicz M; Sengupta K; Basu S; Plewczynski D
    Methods; 2020 Oct; 181-182():5-14. PubMed ID: 31740366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHROMATRA: a Galaxy tool for visualizing genome-wide chromatin signatures.
    Hentrich T; Schulze JM; Emberly E; Kobor MS
    Bioinformatics; 2012 Mar; 28(5):717-8. PubMed ID: 22238257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction.
    Liu X; Song C; Liu S; Li M; Zhou X; Zhang W
    Bioinformatics; 2022 Oct; 38(20):4782-4789. PubMed ID: 36000898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SPRITE: a genome-wide method for mapping higher-order 3D interactions in the nucleus using combinatorial split-and-pool barcoding.
    Quinodoz SA; Bhat P; Chovanec P; Jachowicz JW; Ollikainen N; Detmar E; Soehalim E; Guttman M
    Nat Protoc; 2022 Jan; 17(1):36-75. PubMed ID: 35013617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution discovery of chromatin interactions.
    Guo Y; Krismer K; Closser M; Wichterle H; Gifford DK
    Nucleic Acids Res; 2019 Apr; 47(6):e35. PubMed ID: 30953075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex chromatin interactions with single-molecule precision.
    Zheng M; Tian SZ; Capurso D; Kim M; Maurya R; Lee B; Piecuch E; Gong L; Zhu JJ; Li Z; Wong CH; Ngan CY; Wang P; Ruan X; Wei CL; Ruan Y
    Nature; 2019 Feb; 566(7745):558-562. PubMed ID: 30778195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA Rchitect: an R based visualizer for network analysis of chromatin interaction data.
    Ramirez RN; Bedirian K; Gray SM; Diallo A
    Bioinformatics; 2020 Jan; 36(2):644-646. PubMed ID: 31373608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.