These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32550271)

  • 21. DNA Rchitect: an R based visualizer for network analysis of chromatin interaction data.
    Ramirez RN; Bedirian K; Gray SM; Diallo A
    Bioinformatics; 2020 Jan; 36(2):644-646. PubMed ID: 31373608
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data.
    Ashoor H; Chen X; Rosikiewicz W; Wang J; Cheng A; Wang P; Ruan Y; Li S
    Nat Commun; 2020 Mar; 11(1):1173. PubMed ID: 32127534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting CTCF-mediated chromatin loops using CTCF-MP.
    Zhang R; Wang Y; Yang Y; Zhang Y; Ma J
    Bioinformatics; 2018 Jul; 34(13):i133-i141. PubMed ID: 29949986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mustache: multi-scale detection of chromatin loops from Hi-C and Micro-C maps using scale-space representation.
    Roayaei Ardakany A; Gezer HT; Lonardi S; Ay F
    Genome Biol; 2020 Sep; 21(1):256. PubMed ID: 32998764
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles.
    Tao H; Li H; Xu K; Hong H; Jiang S; Du G; Wang J; Sun Y; Huang X; Ding Y; Li F; Zheng X; Chen H; Bo X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33454752
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-Scale Imaging of the 3D Organization and Transcriptional Activity of Chromatin.
    Su JH; Zheng P; Kinrot SS; Bintu B; Zhuang X
    Cell; 2020 Sep; 182(6):1641-1659.e26. PubMed ID: 32822575
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution.
    Zhang H; Li F; Jia Y; Xu B; Zhang Y; Li X; Zhang Z
    Nucleic Acids Res; 2017 Dec; 45(22):12739-12751. PubMed ID: 29036650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The 3D Genome Structure of Single Cells.
    Zhou T; Zhang R; Ma J
    Annu Rev Biomed Data Sci; 2021 Jul; 4():21-41. PubMed ID: 34465168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring chromatin hierarchical organization via Markov State Modelling.
    Tan ZW; Guarnera E; Berezovsky IN
    PLoS Comput Biol; 2018 Dec; 14(12):e1006686. PubMed ID: 30596637
    [TBL] [Abstract][Full Text] [Related]  

  • 30. From DNA human sequence to the chromatin higher order organisation and its biological meaning: Using biomolecular interaction networks to understand the influence of structural variation on spatial genome organisation and its functional effect.
    Chiliński M; Sengupta K; Plewczynski D
    Semin Cell Dev Biol; 2022 Jan; 121():171-185. PubMed ID: 34429265
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pgltools: a genomic arithmetic tool suite for manipulation of Hi-C peak and other chromatin interaction data.
    Greenwald WW; Li H; Smith EN; Benaglio P; Nariai N; Frazer KA
    BMC Bioinformatics; 2017 Apr; 18(1):207. PubMed ID: 28388874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Long-read ChIA-PET for base-pair-resolution mapping of haplotype-specific chromatin interactions.
    Li X; Luo OJ; Wang P; Zheng M; Wang D; Piecuch E; Zhu JJ; Tian SZ; Tang Z; Li G; Ruan Y
    Nat Protoc; 2017 May; 12(5):899-915. PubMed ID: 28358394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mango: a bias-correcting ChIA-PET analysis pipeline.
    Phanstiel DH; Boyle AP; Heidari N; Snyder MP
    Bioinformatics; 2015 Oct; 31(19):3092-8. PubMed ID: 26034063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. ScSmOP: a universal computational pipeline for single-cell single-molecule multiomics data analysis.
    Jing K; Xu Y; Yang Y; Yin P; Ning D; Huang G; Deng Y; Chen G; Li G; Tian SZ; Zheng M
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37779245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An integrative approach for fine-mapping chromatin interactions.
    Jaroszewicz A; Ernst J
    Bioinformatics; 2020 Mar; 36(6):1704-1711. PubMed ID: 31742318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Methods for mapping 3D chromosome architecture.
    Kempfer R; Pombo A
    Nat Rev Genet; 2020 Apr; 21(4):207-226. PubMed ID: 31848476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromatin Interaction Analysis with Updated ChIA-PET Tool (V3).
    Li G; Sun T; Chang H; Cai L; Hong P; Zhou Q
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31336684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Automatic analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly chromatin colors.
    Serra F; Baù D; Goodstadt M; Castillo D; Filion GJ; Marti-Renom MA
    PLoS Comput Biol; 2017 Jul; 13(7):e1005665. PubMed ID: 28723903
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate loop calling for 3D genomic data with cLoops.
    Cao Y; Chen Z; Chen X; Ai D; Chen G; McDermott J; Huang Y; Guo X; Han JJ
    Bioinformatics; 2020 Feb; 36(3):666-675. PubMed ID: 31504161
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Free energy-based model of CTCF-mediated chromatin looping in the human genome.
    Dawson WK; Lazniewski M; Plewczynski D
    Methods; 2020 Oct; 181-182():35-51. PubMed ID: 32645447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.