These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32550454)

  • 1. Temperature-dependent mitochondrial-nuclear epistasis.
    Cazares-Navarro E; Ross J
    MicroPubl Biol; 2019 Sep; 2019():. PubMed ID: 32550454
    [No Abstract]   [Full Text] [Related]  

  • 2. Mitochondrial Genome Variation Affects Multiple Respiration and Nonrespiration Phenotypes in
    Vijayraghavan S; Kozmin SG; Strope PK; Skelly DA; Lin Z; Kennell J; Magwene PM; Dietrich FS; McCusker JH
    Genetics; 2019 Feb; 211(2):773-786. PubMed ID: 30498022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Recombination Reveals Mito-Mito Epistasis in Yeast.
    Wolters JF; Charron G; Gaspary A; Landry CR; Fiumera AC; Fiumera HL
    Genetics; 2018 May; 209(1):307-319. PubMed ID: 29531011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect.
    Arnqvist G; Dowling DK; Eady P; Gay L; Tregenza T; Tuda M; Hosken DJ
    Evolution; 2010 Dec; 64(12):3354-63. PubMed ID: 20874734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae.
    Paliwal S; Fiumera AC; Fiumera HL
    Genetics; 2014 Nov; 198(3):1251-65. PubMed ID: 25164882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear-mitochondrial epistasis for fitness in Saccharomyces cerevisiae.
    Zeyl C; Andreson B; Weninck E
    Evolution; 2005 Apr; 59(4):910-4. PubMed ID: 15926700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial-Nuclear Epistasis Impacts Fitness and Mitochondrial Physiology of Interpopulation Caenorhabditis briggsae Hybrids.
    Chang CC; Rodriguez J; Ross J
    G3 (Bethesda); 2015 Nov; 6(1):209-19. PubMed ID: 26585825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Drosophila model for mito-nuclear diseases generated by an incompatible interaction between tRNA and tRNA synthetase.
    Holmbeck MA; Donner JR; Villa-Cuesta E; Rand DM
    Dis Model Mech; 2015 Aug; 8(8):843-54. PubMed ID: 26035388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds.
    Rand DM; Fry A; Sheldahl L
    Genetics; 2006 Jan; 172(1):329-41. PubMed ID: 16219776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial-nuclear epistasis: implications for human aging and longevity.
    Tranah GJ
    Ageing Res Rev; 2011 Apr; 10(2):238-52. PubMed ID: 20601194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect genetic effects of sex-specific mitonuclear epistasis on reproductive ageing.
    Immonen E; Collet M; Goenaga J; Arnqvist G
    Heredity (Edinb); 2016 Mar; 116(3):338-47. PubMed ID: 26732015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature-specific outcomes of cytoplasmic-nuclear interactions on egg-to-adult development time in seed beetles.
    Dowling DK; Abiega KC; Arnqvist G
    Evolution; 2007 Jan; 61(1):194-201. PubMed ID: 17300438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex-specific mitonuclear epistasis and the evolution of mitochondrial bioenergetics, ageing, and life history in seed beetles.
    Đorđević M; Stojković B; Savković U; Immonen E; Tucić N; Lazarević J; Arnqvist G
    Evolution; 2017 Feb; 71(2):274-288. PubMed ID: 27861795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Genetics Reinforces Multiple Layers of Interaction in Alzheimer's Disease.
    Cavalcante GC; Brito LM; Schaan AP; Ribeiro-Dos-Santos Â; de Araújo GS; On Behalf Of Alzheimer's Disease Neuroimaging Initiative
    Biomedicines; 2022 Apr; 10(4):. PubMed ID: 35453630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial-Y chromosome epistasis in
    Ågren JA; Munasinghe M; Clark AG
    Proc Biol Sci; 2020 Oct; 287(1937):20200469. PubMed ID: 33081607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitonuclear epistasis, genotype-by-environment interactions, and personalized genomics of complex traits in Drosophila.
    Rand DM; Mossman JA; Zhu L; Biancani LM; Ge JY
    IUBMB Life; 2018 Dec; 70(12):1275-1288. PubMed ID: 30394643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila.
    Meiklejohn CD; Holmbeck MA; Siddiq MA; Abt DN; Rand DM; Montooth KL
    PLoS Genet; 2013; 9(1):e1003238. PubMed ID: 23382693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitonuclear Epistasis for Development Time and Its Modification by Diet in Drosophila.
    Mossman JA; Biancani LM; Zhu CT; Rand DM
    Genetics; 2016 May; 203(1):463-84. PubMed ID: 26966258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial-nuclear DNA interactions contribute to the regulation of nuclear transcript levels as part of the inter-organelle communication system.
    Rodley CD; Grand RS; Gehlen LR; Greyling G; Jones MB; O'Sullivan JM
    PLoS One; 2012; 7(1):e30943. PubMed ID: 22292080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitonuclear epistasis and mitochondrial disease.
    Morrow EH; Camus MF
    Mitochondrion; 2017 Jul; 35():119-122. PubMed ID: 28603048
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.