These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32550544)

  • 1. Development of a high efficient promoter finding method based on transient transfection.
    Lu Y; Li Q; Zheng K; Fu C; Jiang C; Zhou D; Xia C; Ma S
    Gene X; 2019 Jun; 2():100008. PubMed ID: 32550544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a high efficient promoter finding method based on transient transfection.
    Lu Y; Li Q; Zheng K; Fu C; Jiang C; Zhou D; Xia C; Ma S
    Gene; 2019; 721S():100008. PubMed ID: 34530991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATAC-STARR-seq reveals transcription factor-bound activators and silencers within chromatin-accessible regions of the human genome.
    Hansen TJ; Hodges E
    Genome Res; 2022 Aug; 32(8):1529-1541. PubMed ID: 35858748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction accuracy of regulatory elements from sequence varies by functional sequencing technique.
    Nowling RJ; Njoya K; Peters JG; Riehle MM
    Front Cell Infect Microbiol; 2023; 13():1182567. PubMed ID: 37600946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide mapping of histone H3 lysine 4 trimethylation in Eucalyptus grandis developing xylem.
    Hussey SG; Mizrachi E; Groover A; Berger DK; Myburg AA
    BMC Plant Biol; 2015 May; 15():117. PubMed ID: 25957781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo.
    Chang TY; Waxman DJ
    Res Sq; 2024 Jun; ():. PubMed ID: 38978599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HDI-STARR-seq: Condition-specific enhancer discovery in mouse liver in vivo.
    Chang TY; Waxman DJ
    bioRxiv; 2024 Jun; ():. PubMed ID: 38915578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STARR-seq and UMI-STARR-seq: Assessing Enhancer Activities for Genome-Wide-, High-, and Low-Complexity Candidate Libraries.
    Neumayr C; Pagani M; Stark A; Arnold CD
    Curr Protoc Mol Biol; 2019 Sep; 128(1):e105. PubMed ID: 31503413
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Analysis of Maize Enhancer Regulatory Elements Using ATAC-STARR-seq.
    Marand AP
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential open chromatin profile and transcriptomic signature define depot-specific human subcutaneous preadipocytes: primary outcomes.
    Divoux A; Sandor K; Bojcsuk D; Talukder A; Li X; Balint BL; Osborne TF; Smith SR
    Clin Epigenetics; 2018 Nov; 10(1):148. PubMed ID: 30477572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Annotation of gene promoters by integrative data-mining of ChIP-seq Pol-II enrichment data.
    Gupta R; Wikramasinghe P; Bhattacharyya A; Perez FA; Pal S; Davuluri RV
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S65. PubMed ID: 20122241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative genome-wide chromatin signature analysis using finite mixture models.
    Taslim C; Lin S; Huang K; Huang TH
    BMC Genomics; 2012; 13 Suppl 6(Suppl 6):S3. PubMed ID: 23134707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction.
    Inoue F; Kreimer A; Ashuach T; Ahituv N; Yosef N
    Cell Stem Cell; 2019 Nov; 25(5):713-727.e10. PubMed ID: 31631012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping accessible chromatin regions using Sono-Seq.
    Auerbach RK; Euskirchen G; Rozowsky J; Lamarre-Vincent N; Moqtaderi Z; Lefrançois P; Struhl K; Gerstein M; Snyder M
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):14926-31. PubMed ID: 19706456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulatory chromatin landscape in
    Tannenbaum M; Sarusi-Portuguez A; Krispil R; Schwartz M; Loza O; Benichou JIC; Mosquna A; Hakim O
    Plant Methods; 2018; 14():113. PubMed ID: 30598689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R; Ozer HG; Wei H; Prabhu L; Lu T
    Cell Cycle; 2014; 13(18):2847-52. PubMed ID: 25486472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal ChIP-on-Chip of RNA-Polymerase-II to detect novel gene activation events during photoreceptor maturation.
    Tummala P; Mali RS; Guzman E; Zhang X; Mitton KP
    Mol Vis; 2010 Feb; 16():252-71. PubMed ID: 20161818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining Regulatory Elements in the Human Genome Using Nucleosome Occupancy and Methylome Sequencing (NOMe-Seq).
    Rhie SK; Schreiner S; Farnham PJ
    Methods Mol Biol; 2018; 1766():209-229. PubMed ID: 29605855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation by promoters with enhancer function.
    Dao LTM; Spicuglia S
    Transcription; 2018; 9(5):307-314. PubMed ID: 29889606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Specific chromatin landscapes and transcription factors couple breast cancer subtype with metastatic relapse to lung or brain.
    Cai WL; Greer CB; Chen JF; Arnal-Estapé A; Cao J; Yan Q; Nguyen DX
    BMC Med Genomics; 2020 Mar; 13(1):33. PubMed ID: 32143622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.