BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 32550890)

  • 1. FABP5 promotes lymph node metastasis in cervical cancer by reprogramming fatty acid metabolism.
    Zhang C; Liao Y; Liu P; Du Q; Liang Y; Ooi S; Qin S; He S; Yao S; Wang W
    Theranostics; 2020; 10(15):6561-6580. PubMed ID: 32550890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High expression of PTPRM predicts poor prognosis and promotes tumor growth and lymph node metastasis in cervical cancer.
    Liu P; Zhang C; Liao Y; Liu J; Huang J; Xia M; Chen M; Tan H; He W; Xu M; Liu T; Ooi S; Du Q; Qin S; Zhu Y; Zou Q; Wang W; Yao S
    Cell Death Dis; 2020 Aug; 11(8):687. PubMed ID: 32826853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The prognostic miR-532-5p-correlated ceRNA-mediated lipid droplet accumulation drives nodal metastasis of cervical cancer.
    Shang C; Li Y; He T; Liao Y; Du Q; Wang P; Qiao J; Guo H
    J Adv Res; 2022 Mar; 37():169-184. PubMed ID: 35499057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-494-dependent WDHDI inhibition suppresses epithelial-mesenchymal transition, tumor growth and metastasis in cholangiocarcinoma.
    Liu B; Hu Y; Qin L; Peng XB; Huang YX
    Dig Liver Dis; 2019 Mar; 51(3):397-411. PubMed ID: 30314946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FABP5 correlates with poor prognosis and promotes tumor cell growth and metastasis in cervical cancer.
    Wang W; Chu HJ; Liang YC; Huang JM; Shang CL; Tan H; Liu D; Zhao YH; Liu TY; Yao SZ
    Tumour Biol; 2016 Nov; 37(11):14873-14883. PubMed ID: 27644245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-221-3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS2.
    Wei WF; Zhou CF; Wu XG; He LN; Wu LF; Chen XJ; Yan RM; Zhong M; Yu YH; Liang L; Wang W
    Cell Death Dis; 2017 Dec; 8(12):3220. PubMed ID: 29242498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FABP5 is correlated with poor prognosis and promotes tumour cell growth and metastasis in clear cell renal cell carcinoma.
    Wu G; Xu Y; Wang Q; Li J; Li L; Han C; Xia Q
    Eur J Pharmacol; 2019 Nov; 862():172637. PubMed ID: 31491402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-492 overexpression involves in cell proliferation, migration, and radiotherapy response of cervical squamous cell carcinomas.
    Liu M; An J; Huang M; Wang L; Tu B; Song Y; Ma K; Wang Y; Wang S; Zhu H; Xu N; Wu L
    Mol Carcinog; 2018 Jan; 57(1):32-43. PubMed ID: 28802022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid-binding protein 5 function in hepatocellular carcinoma through induction of epithelial-mesenchymal transition.
    Ohata T; Yokoo H; Kamiyama T; Fukai M; Aiyama T; Hatanaka Y; Hatanaka K; Wakayama K; Orimo T; Kakisaka T; Kobayashi N; Matsuno Y; Taketomi A
    Cancer Med; 2017 May; 6(5):1049-1061. PubMed ID: 28374947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells.
    Senga S; Kobayashi N; Kawaguchi K; Ando A; Fujii H
    Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Sep; 1863(9):1057-1067. PubMed ID: 29906613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [FABP5 promotes cell growth, invasion and metastasis in cervical cancer].
    Zhan YZ; Liu F; Zhang Y; Mo XY; Cheng WD; Wang W
    Zhonghua Zhong Liu Za Zhi; 2019 Mar; 41(3):200-207. PubMed ID: 30917456
    [No Abstract]   [Full Text] [Related]  

  • 12. SP1-induced HOXD-AS1 promotes malignant progression of cholangiocarcinoma by regulating miR-520c-3p/MYCN.
    Li J; Jiang X; Li Z; Huang L; Ji D; Yu L; Zhou Y; Cui Y
    Aging (Albany NY); 2020 Aug; 12(16):16304-16325. PubMed ID: 32857725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FASN promotes lymph node metastasis in cervical cancer via cholesterol reprogramming and lymphangiogenesis.
    Du Q; Liu P; Zhang C; Liu T; Wang W; Shang C; Wu J; Liao Y; Chen Y; Huang J; Tan H; Zhao Y; Xia M; Liu J; Yao S
    Cell Death Dis; 2022 May; 13(5):488. PubMed ID: 35597782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cervical squamous cell carcinoma-secreted exosomal miR-221-3p promotes lymphangiogenesis and lymphatic metastasis by targeting VASH1.
    Zhou CF; Ma J; Huang L; Yi HY; Zhang YM; Wu XG; Yan RM; Liang L; Zhong M; Yu YH; Wu S; Wang W
    Oncogene; 2019 Feb; 38(8):1256-1268. PubMed ID: 30254211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long non-coding RNA
    Fan MJ; Zou YH; He PJ; Zhang S; Sun XM; Li CZ
    Biosci Rep; 2019 Jun; 39(6):. PubMed ID: 31092700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HN1 promotes tumor associated lymphangiogenesis and lymph node metastasis via NF-κB signaling activation in cervical carcinoma.
    Chen J; Qiu J; Li F; Jiang X; Sun X; Zheng L; Zhang W; Li H; Wu H; Ouyang Y; Chen X; Lin C; Song L; Zhang Y
    Biochem Biophys Res Commun; 2020 Sep; 530(1):87-94. PubMed ID: 32828320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FABP5 regulates the proliferation of clear cell renal cell carcinoma cells via the PI3K/AKT signaling pathway.
    Lv Q; Wang G; Zhang Y; Han X; Li H; Le W; Zhang M; Ma C; Wang P; Ding Q
    Int J Oncol; 2019 Apr; 54(4):1221-1232. PubMed ID: 30968158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oncogenic miR-210-3p promotes prostate cancer cell EMT and bone metastasis via NF-κB signaling pathway.
    Ren D; Yang Q; Dai Y; Guo W; Du H; Song L; Peng X
    Mol Cancer; 2017 Jul; 16(1):117. PubMed ID: 28693582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FABP4 is an independent risk factor for lymph node metastasis and poor prognosis in patients with cervical cancer.
    Li G; Wu Q; Gong L; Xu X; Cai J; Xu L; Zeng Y; He X; Wang Z
    Cancer Cell Int; 2021 Oct; 21(1):568. PubMed ID: 34702269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin β4/SNAI1/SIRT3 signaling pathway.
    Wang S; Li J; Xie J; Liu F; Duan Y; Wu Y; Huang S; He X; Wang Z; Wu X
    Oncogene; 2018 Jul; 37(30):4164-4180. PubMed ID: 29706653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.