BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 3255105)

  • 1. Lecithin:cholesterol acyltransferase activation by synthetic amphipathic peptides.
    Subbarao NK; Fielding CJ; Hamilton RL; Szoka FC
    Proteins; 1988; 3(3):187-98. PubMed ID: 3255105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of synthetic peptides of human apolipoprotein A-I containing tandem amphipathic alpha-helixes.
    Mishra VK; Palgunachari MN; Datta G; Phillips MC; Lund-Katz S; Adeyeye SO; Segrest JP; Anantharamaiah GM
    Biochemistry; 1998 Jul; 37(28):10313-24. PubMed ID: 9665740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of end group blockage on the properties of a class A amphipathic helical peptide.
    Venkatachalapathi YV; Phillips MC; Epand RM; Epand RF; Tytler EM; Segrest JP; Anantharamaiah GM
    Proteins; 1993 Apr; 15(4):349-59. PubMed ID: 8460106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes.
    Mishra VK; Palgunachari MN
    Biochemistry; 1996 Aug; 35(34):11210-20. PubMed ID: 8780526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GALA: a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery.
    Li W; Nicol F; Szoka FC
    Adv Drug Deliv Rev; 2004 Apr; 56(7):967-85. PubMed ID: 15066755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a new class of amphipathic helical peptides for the plasma apolipoproteins that promote cellular cholesterol efflux but do not activate LCAT.
    Labeur C; Lins L; Vanloo B; Baert J; Brasseur R; Rosseneu M
    Arterioscler Thromb Vasc Biol; 1997 Mar; 17(3):580-8. PubMed ID: 9102180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes.
    Kiyota T; Lee S; Sugihara G
    Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The lipid-free structure of apolipoprotein A-I: effects of amino-terminal deletions.
    Rogers DP; Roberts LM; Lebowitz J; Datta G; Anantharamaiah GM; Engler JA; Brouillette CG
    Biochemistry; 1998 Aug; 37(34):11714-25. PubMed ID: 9718294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional properties of the 154-171 wild-type and variant peptides of human lecithin-cholesterol acyltransferase.
    Peelman F; Goethals M; Vanloo B; Labeur C; Brasseur R; Vandekerckhove J; Rosseneu M
    Eur J Biochem; 1997 Nov; 249(3):708-15. PubMed ID: 9395317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of the hydrophobicity gradient of an amphipathic peptide to its mode of association with lipids.
    Pérez-Méndez O; Vanloo B; Decout A; Goethals M; Peelman F; Vandekerckhove J; Brasseur R; Rosseneu M
    Eur J Biochem; 1998 Sep; 256(3):570-9. PubMed ID: 9780233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of lecithin:cholesterol acyltransferase by a synthetic model lipid-associating peptide.
    Pownall HJ; Hu A; Gotto AM; Albers JJ; Sparrow JT
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3154-8. PubMed ID: 6774331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; Gariépy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anionic phospholipids modulate peptide insertion into membranes.
    Liu LP; Deber CM
    Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of helical structure in two 17-residue amphipathic analogues of the C-terminal peptide of cytochrome C.
    Collawn JF; Paterson Y
    Biopolymers; 1990 Jul-Aug 5; 29(8-9):1289-96. PubMed ID: 2164428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation and lipid binding of the N-terminal (1-44) domain of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2004 Oct; 43(41):13156-64. PubMed ID: 15476409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues.
    Song YM; Park Y; Lim SS; Yang ST; Woo ER; Park IS; Lee JS; Kim JI; Hahm KS; Kim Y; Shin SY
    Biochemistry; 2005 Sep; 44(36):12094-106. PubMed ID: 16142907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composition and structural and functional properties of discoidal and spherical phospholipid-apoE3 complexes.
    De Pauw M; Vanloo B; Dergunov AD; Devreese AM; Baert J; Brasseur R; Rosseneu M
    Biochemistry (Mosc); 1997 Mar; 62(3):251-63. PubMed ID: 9275298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies of synthetic peptide analogs of the amphipathic helix. Effect of charge distribution, hydrophobicity, and secondary structure on lipid association and lecithin:cholesterol acyltransferase activation.
    Epand RM; Gawish A; Iqbal M; Gupta KB; Chen CH; Segrest JP; Anantharamaiah GM
    J Biol Chem; 1987 Jul; 262(19):9389-96. PubMed ID: 3597415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structure and orientation of the amphipathic peptide GALA in lipid structures. An infrared-spectroscopic approach.
    Goormaghtigh E; De Meutter J; Szoka F; Cabiaux V; Parente RA; Ruysschaert JM
    Eur J Biochem; 1991 Jan; 195(2):421-9. PubMed ID: 1997324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.