These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32551064)

  • 21. Geographical distribution of As-hyperaccumulator Pteris vittata in China: Environmental factors and climate changes.
    Xu W; Du Q; Yan S; Cao Y; Liu X; Guan DX; Ma LQ
    Sci Total Environ; 2022 Jan; 803():149864. PubMed ID: 34500282
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models.
    Su H; Bista M; Li M
    Sci Rep; 2021 Jul; 11(1):14135. PubMed ID: 34238986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of Potential Suitable Distribution Areas of
    Hou J; Xiang J; Li D; Liu X
    Biology (Basel); 2023 Feb; 12(3):. PubMed ID: 36979059
    [No Abstract]   [Full Text] [Related]  

  • 24. Potential geographical distribution and environmental explanations of rare and endangered plant species through combined modeling: A case study of Northwest Yunnan, China.
    Ye P; Zhang G; Zhao X; Chen H; Si Q; Wu J
    Ecol Evol; 2021 Oct; 11(19):13052-13067. PubMed ID: 34646452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting the Impact of Climate Change on the Geographical Distribution of Leafhopper,
    Wei X; Xu D; Zhuo Z
    Insects; 2023 Jun; 14(7):. PubMed ID: 37504592
    [No Abstract]   [Full Text] [Related]  

  • 26. Species distribution modelling of
    Ali F; Khan N; Khan AM; Ali K; Abbas F
    Heliyon; 2023 Feb; 9(2):e13417. PubMed ID: 36825187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cryptosporidiosis threat under climate change in China: prediction and validation of habitat suitability and outbreak risk for human-derived Cryptosporidium based on ecological niche models.
    Wang X; Jiang Y; Wu W; He X; Wang Z; Guan Y; Xu N; Chen Q; Shen Y; Cao J
    Infect Dis Poverty; 2023 Apr; 12(1):35. PubMed ID: 37041630
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Ghafouri Moghaddam M; Butcher BA
    Insects; 2023 Mar; 14(4):. PubMed ID: 37103153
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting the distributional range shifts of Rhizocarpon geographicum (L.) DC. in Indian Himalayan Region under future climate scenarios.
    Kumar D; Pandey A; Rawat S; Joshi M; Bajpai R; Upreti DK; Singh SP
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):61579-61593. PubMed ID: 34351582
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geographic distribution and impacts of climate change on the suitable habitats of Rhamnus utilis Decne in China.
    Guiquan S; Jiali F; Shuai G; Wenya H; Xiangkun K; Sheng Z; Yueling Z; Xuelian J
    BMC Plant Biol; 2023 Nov; 23(1):592. PubMed ID: 38008724
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting the potential distribution of the parasitic Cuscuta chinensis under global warming.
    Ren Z; Zagortchev L; Ma J; Yan M; Li J
    BMC Ecol; 2020 May; 20(1):28. PubMed ID: 32386506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Climate change and risk of leishmaniasis in north america: predictions from ecological niche models of vector and reservoir species.
    González C; Wang O; Strutz SE; González-Salazar C; Sánchez-Cordero V; Sarkar S
    PLoS Negl Trop Dis; 2010 Jan; 4(1):e585. PubMed ID: 20098495
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Prediction of suitable habitats of
    Ma B; Ma XY; Zhang Y; Chen HB; Wang Q; Li LH
    Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2021 Mar; 33(2):169-176. PubMed ID: 34008364
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the potential distribution of Amblyomma americanum (Acari: Ixodidae) infestation in New Zealand, using maximum entropy-based ecological niche modelling.
    Raghavan RK; Heath ACG; Lawrence KE; Ganta RR; Peterson AT; Pomroy WE
    Exp Appl Acarol; 2020 Feb; 80(2):227-245. PubMed ID: 31965414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Climate Change on the Distribution of Threatened Fishing Bat
    Guo W; Li Z; Liu T; Feng J
    Animals (Basel); 2023 May; 13(11):. PubMed ID: 37889742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simulation of the potential distribution of rare and endangered
    Ouyang X; Bai S; Strachan GB; Chen A
    Ecol Evol; 2022 Jul; 12(7):e9054. PubMed ID: 35845387
    [No Abstract]   [Full Text] [Related]  

  • 37. Effect of Climate Change on the Potentially Suitable Distribution Pattern of
    Shen L; Deng H; Zhang G; Ma A; Mo X
    Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting of the current and future geographical distribution of Laurus nobilis L. under the effects of climate change.
    Akyol A; Örücü ÖK; Arslan ES; Sarıkaya AG
    Environ Monit Assess; 2023 Mar; 195(4):459. PubMed ID: 36897509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of climate-change scenarios on the distribution patterns of
    Xie C; Tian E; Jim CY; Liu D; Hu Z
    Ecol Evol; 2022 Dec; 12(12):e9597. PubMed ID: 36514555
    [No Abstract]   [Full Text] [Related]  

  • 40. Modeling the effect of climate change on the distribution of threatened medicinal orchid Satyrium nepalense D. Don in India.
    Kumar D; Rawat S
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72431-72444. PubMed ID: 35524848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.