These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 32551335)

  • 1. Effect of size and location of simulated lytic lesions on the structural properties of human vertebral bodies, a micro-finite element study.
    Costa MC; Campello LBB; Ryan M; Rochester J; Viceconti M; Dall'Ara E
    Bone Rep; 2020 Jun; 12():100257. PubMed ID: 32551335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conventional finite element models estimate the strength of metastatic human vertebrae despite alterations of the bone's tissue and structure.
    Stadelmann MA; Schenk DE; Maquer G; Lenherr C; Buck FM; Bosshardt DD; Hoppe S; Theumann N; Alkalay RN; Zysset PK
    Bone; 2020 Dec; 141():115598. PubMed ID: 32829037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical assessment of vertebrae with lytic metastases with subject-specific finite element models.
    Costa MC; Eltes P; Lazary A; Varga PP; Viceconti M; Dall'Ara E
    J Mech Behav Biomed Mater; 2019 Oct; 98():268-290. PubMed ID: 31280054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micro Finite Element models of the vertebral body: Validation of local displacement predictions.
    Costa MC; Tozzi G; Cristofolini L; Danesi V; Viceconti M; Dall'Ara E
    PLoS One; 2017; 12(7):e0180151. PubMed ID: 28700618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroFE models of porcine vertebrae with induced bone focal lesions: Validation of predicted displacements with digital volume correlation.
    Palanca M; Oliviero S; Dall'Ara E
    J Mech Behav Biomed Mater; 2022 Jan; 125():104872. PubMed ID: 34655942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions.
    Wolfram U; Wilke HJ; Zysset PK
    J Biomech; 2010 Jun; 43(9):1731-7. PubMed ID: 20206932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type, size, and position of metastatic lesions explain the deformation of the vertebrae under complex loading conditions.
    Palanca M; Barbanti-Bròdano G; Marras D; Marciante M; Serra M; Gasbarrini A; Dall'Ara E; Cristofolini L
    Bone; 2021 Oct; 151():116028. PubMed ID: 34087385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of bone metastases on the mechanical competence of human vertebrae.
    Palanca M; Cavazzoni G; Dall'Ara E
    Bone; 2023 Aug; 173():116814. PubMed ID: 37257631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Burst fracture in the metastatically involved spine: development, validation, and parametric analysis of a three-dimensional poroelastic finite-element model.
    Whyne CM; Hu SS; Lotz JC
    Spine (Phila Pa 1976); 2003 Apr; 28(7):652-60. PubMed ID: 12671351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of finite element models of the mouse tibia using digital volume correlation.
    Oliviero S; Giorgi M; Dall'Ara E
    J Mech Behav Biomed Mater; 2018 Oct; 86():172-184. PubMed ID: 29986291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the shape of the micro-finite element model on the mechanical properties calculated from micro-finite element analysis.
    Wen XX; Yu HL; Yan YB; Zong CL; Ding HJ; Ma XY; Wang TS; Lei W
    Exp Ther Med; 2017 Aug; 14(2):1744-1748. PubMed ID: 28810645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A patient-specific computer tomography-based finite element methodology to calculate the six dimensional stiffness matrix of human vertebral bodies.
    Chevalier Y; Zysset PK
    J Biomech Eng; 2012 May; 134(5):051006. PubMed ID: 22757494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical evaluation of calcium phosphate-based nanocomposite versus polymethylmethacrylate cement for percutaneous kyphoplasty.
    Lu Q; Liu C; Wang D; Liu H; Yang H; Yang L
    Spine J; 2019 Nov; 19(11):1871-1884. PubMed ID: 31202837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Female Human Spines with Simulated Osteolytic Defects: CT-based Structural Analysis of Vertebral Body Strength.
    Alkalay R; Adamson R; Miropolsky A; Hackney D
    Radiology; 2018 Aug; 288(2):436-444. PubMed ID: 29869960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biomechanics of vertebroplasty in multiple myeloma and metastatic bladder cancer: a preliminary cadaveric investigation.
    Oakland RJ; Furtado NR; Timothy J; Hall RM
    J Neurosurg Spine; 2008 Nov; 9(5):493-501. PubMed ID: 18976181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stent Screw-Assisted Internal Fixation (SAIF) of Severe Lytic Spinal Metastases: A Comparative Finite Element Analysis of the SAIF Technique.
    La Barbera L; Cianfoni A; Ferrari A; Distefano D; Bonaldi G; Villa T
    World Neurosurg; 2019 Aug; 128():e370-e377. PubMed ID: 31029814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analyses of human vertebral bodies embedded in polymethylmethalcrylate or loaded via the hyperelastic intervertebral disc models provide equivalent predictions of experimental strength.
    Lu Y; Maquer G; Museyko O; Püschel K; Engelke K; Zysset P; Morlock M; Huber G
    J Biomech; 2014 Jul; 47(10):2512-6. PubMed ID: 24818795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of vertebral bone strength, fracture pattern, and fracture location: a validation study using a computed tomography-based nonlinear finite element analysis.
    Imai K
    Aging Dis; 2015 Jun; 6(3):180-7. PubMed ID: 26029476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical assessment of the effects of metastatic lytic defect on the structural response of human thoracolumbar spine.
    Alkalay RN; Harrigan TP
    J Orthop Res; 2016 Oct; 34(10):1808-1819. PubMed ID: 26748564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.