These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32551339)

  • 1. Corrigendum to "Dedifferentiated fat cells in polyglycolic acid-collagen nerve conduits promote rat facial nerve regeneration" [Regen Ther 11 (2019) 240-248].
    Fujimaki H; Matsumine H; Osaki H; Ueta Y; Kamei W; Shimizu M; Hashimoto K; Fujii K; Kazama T; Matsumoto T; Niimi Y; Miyata M; Sakurai H
    Regen Ther; 2020 Dec; 15():35-43. PubMed ID: 32551339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dedifferentiated fat cells in polyglycolic acid-collagen nerve conduits promote rat facial nerve regeneration.
    Fujimaki H; Matsumine H; Osaki H; Ueta Y; Kamei W; Shimizu M; Hashimoto K; Fujii K; Kazama T; Matsumoto T; Niimi Y; Miyata M; Sakurai H
    Regen Ther; 2019 Dec; 11():240-248. PubMed ID: 31534987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adipose-derived stem cells and the stromal vascular fraction in polyglycolic acid-collagen nerve conduits promote rat facial nerve regeneration.
    Shimizu M; Matsumine H; Osaki H; Ueta Y; Tsunoda S; Kamei W; Hashimoto K; Niimi Y; Watanabe Y; Miyata M; Sakurai H
    Wound Repair Regen; 2018 Nov; 26(6):446-455. PubMed ID: 30118577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering.
    Kishimoto N; Honda Y; Momota Y; Tran SD
    Oral Dis; 2018 Oct; 24(7):1161-1167. PubMed ID: 29356251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Markers and Functional Attributes of Human Adipose-Derived Stem Cells and Dedifferentiated Adipocyte Cells from Subcutaneous Fat of an Obese Diabetic Donor.
    Watson JE; Patel NA; Carter G; Moor A; Patel R; Ghansah T; Mathur A; Murr MM; Bickford P; Gould LJ; Cooper DR
    Adv Wound Care (New Rochelle); 2014 Mar; 3(3):219-228. PubMed ID: 24669358
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparative study of autologous stromal vascular fraction and adipose-derived stem cells for erectile function recovery in a rat model of cavernous nerve injury.
    You D; Jang MJ; Kim BH; Song G; Lee C; Suh N; Jeong IG; Ahn TY; Kim CS
    Stem Cells Transl Med; 2015 Apr; 4(4):351-8. PubMed ID: 25792486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplantation of dedifferentiated fat cells combined with a biodegradable type I collagen-recombinant peptide scaffold for critical-size bone defects in rats.
    Tateno A; Asano M; Akita D; Toriumi T; Tsurumachi-Iwasaki N; Kazama T; Arai Y; Matsumoto T; Kano K; Honda M
    J Oral Sci; 2019 Nov; 61(4):534-538. PubMed ID: 31631097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells.
    Kono S; Kazama T; Kano K; Harada K; Uechi M; Matsumoto T
    Vet J; 2014 Jan; 199(1):88-96. PubMed ID: 24300011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transplantation of mature adipocyte-derived dedifferentiated fat cells into three-wall defects in the rat periodontium induces tissue regeneration.
    Suzuki D; Akita D; Tsurumachi N; Kano K; Yamanaka K; Kaneko T; Kawano E; Iguchi S; Toriumi T; Arai Y; Matsumoto T; Sato S; Honda M
    J Oral Sci; 2017; 59(4):611-620. PubMed ID: 29279571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of Rat Mature Adipocyte-Derived Dedifferentiated Fat Cells as a Cell Source for Periodontal Tissue Regeneration.
    Akita D; Kano K; Saito-Tamura Y; Mashimo T; Sato-Shionome M; Tsurumachi N; Yamanaka K; Kaneko T; Toriumi T; Arai Y; Tsukimura N; Matsumoto T; Ishigami T; Isokawa K; Honda M
    Front Physiol; 2016; 7():50. PubMed ID: 26941649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyglycolic acid-collagen tube combined with collagen-binding basic fibroblast growth factor accelerates gait recovery in a rat sciatic nerve critical-size defect model.
    Fujimaki H; Uchida K; Inoue G; Matsushita O; Nemoto N; Miyagi M; Inage K; Takano S; Orita S; Ohtori S; Tanaka K; Sekiguchi H; Takaso M
    J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):326-332. PubMed ID: 31016841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of jaw bone regeneration via ERK1/2 activation using dedifferentiated fat cells.
    Fujisaki S; Kajiya H; Yanagi T; Maeshiba M; Kakura K; Kido H; Ohno J
    Cytotherapy; 2021 Jul; 23(7):608-616. PubMed ID: 33863640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrigendum to "Biologically modified implantation as therapeutic bioabsorbable materials for bone defect repair" [Regen Ther 19 (2022) 9-23].
    Li C; Lv H; Du Y; Zhu W; Yang W; Wang X; Wang J; Chen W
    Regen Ther; 2023 Mar; 22():191. PubMed ID: 36874475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axonal supercharged interpositional jump-graft with a hybrid artificial nerve conduit containing adipose-derived stem cells in facial nerve paresis rat model.
    Kamei W; Matsumine H; Osaki H; Ueta Y; Tsunoda S; Shimizu M; Hashimoto K; Niimi Y; Miyata M; Sakurai H
    Microsurgery; 2018 Nov; 38(8):889-898. PubMed ID: 30380159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of dedifferentiation fat cells promotes intervertebral disc regeneration in a rat intervertebral disc degeneration model.
    Nakayama E; Matsumoto T; Kazama T; Kano K; Tokuhashi Y
    Biochem Biophys Res Commun; 2017 Nov; 493(2):1004-1009. PubMed ID: 28942142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracavernous delivery of freshly isolated stromal vascular fraction rescues erectile function by enhancing endothelial regeneration in the streptozotocin-induced diabetic mouse.
    Ryu JK; Tumurbaatar M; Jin HR; Kim WJ; Kwon MH; Piao S; Choi MJ; Yin GN; Song KM; Kang YJ; Koh YJ; Koh GY; Suh JK
    J Sex Med; 2012 Dec; 9(12):3051-65. PubMed ID: 23088258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and multipotency of equine dedifferentiated fat cells.
    Murata D; Yamasaki A; Matsuzaki S; Sunaga T; Fujiki M; Tokunaga S; Misumi K
    J Equine Sci; 2016; 27(2):57-65. PubMed ID: 27330399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined effects of brain-derived neurotrophic factor immobilized poly-lactic-co-glycolic acid membrane with human adipose-derived stem cells and basic fibroblast growth factor hydrogel on recovery of erectile dysfunction.
    Lee SH; Kim IG; Jung AR; Shrestha KR; Lee JH; Park KD; Chung BH; Kim SW; Kim KH; Lee JY
    Tissue Eng Part A; 2014 Sep; 20(17-18):2446-54. PubMed ID: 24673637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of human adipose-derived stem cells and stromal vascular fraction on cryopreserved fat transfer.
    Bae YC; Song JS; Bae SH; Kim JH
    Dermatol Surg; 2015 May; 41(5):605-14. PubMed ID: 25899889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting.
    Waitayawinyu T; Parisi DM; Miller B; Luria S; Morton HJ; Chin SH; Trumble TE
    J Hand Surg Am; 2007 Dec; 32(10):1521-9. PubMed ID: 18070638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.