BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 32551522)

  • 1. Unexpected Differences between Two Closely Related Bacterial P450 Camphor Monooxygenases.
    Murarka VC; Batabyal D; Amaya JA; Sevrioukova IF; Poulos TL
    Biochemistry; 2020 Jul; 59(29):2743-2750. PubMed ID: 32551522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Analysis of the Effector Role of Redox Partner Binding in Bacterial P450s.
    Batabyal D; Lewis-Ballester A; Yeh SR; Poulos TL
    Biochemistry; 2016 Nov; 55(47):6517-6523. PubMed ID: 27808504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of redox partner binding on CYP101D1 conformational dynamics.
    Batabyal D; Poulos TL
    J Inorg Biochem; 2018 Jun; 183():179-183. PubMed ID: 29550100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic effects of mutations in cytochrome P450cam designed to mimic CYP101D1.
    Batabyal D; Li H; Poulos TL
    Biochemistry; 2013 Aug; 52(32):5396-402. PubMed ID: 23865948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structure of CYP101D2 unveils a potential path for substrate entry into the active site.
    Yang W; Bell SG; Wang H; Zhou W; Bartlam M; Wong LL; Rao Z
    Biochem J; 2011 Jan; 433(1):85-93. PubMed ID: 20950270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural evidence for a functionally relevant second camphor binding site in P450cam: model for substrate entry into a P450 active site.
    Yao H; McCullough CR; Costache AD; Pullela PK; Sem DS
    Proteins; 2007 Oct; 69(1):125-38. PubMed ID: 17598143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial Opening of Cytochrome P450cam (CYP101A1) Is Driven by Allostery and Putidaredoxin Binding.
    Skinner SP; Follmer AH; Ubbink M; Poulos TL; Houwing-Duistermaat JJ; Paci E
    Biochemistry; 2021 Oct; 60(39):2932-2942. PubMed ID: 34519197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Updating the Paradigm: Redox Partner Binding and Conformational Dynamics in Cytochromes P450.
    Poulos TL; Follmer AH
    Acc Chem Res; 2022 Feb; 55(3):373-380. PubMed ID: 34965086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the Substrate Recognition Pathway in Cytochrome P450.
    Ahalawat N; Mondal J
    J Am Chem Soc; 2018 Dec; 140(50):17743-17752. PubMed ID: 30479124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton relay network in P450cam formed upon docking of putidaredoxin.
    Ugur I; Chandrasekhar P
    Proteins; 2020 Apr; 88(4):558-572. PubMed ID: 31597203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific and non-specific effects of potassium cations on substrate-protein interactions in cytochromes P450cam and P450lin.
    Deprez E; Gill E; Helms V; Wade RC; Hui Bon Hoa G
    J Inorg Biochem; 2002 Sep; 91(4):597-606. PubMed ID: 12237225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxylation of camphor by reduced oxy-cytochrome P450cam: mechanistic implications of EPR and ENDOR studies of catalytic intermediates in native and mutant enzymes.
    Davydov R; Makris TM; Kofman V; Werst DE; Sligar SG; Hoffman BM
    J Am Chem Soc; 2001 Feb; 123(7):1403-15. PubMed ID: 11456714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations of glutamate-84 at the putative potassium-binding site affect camphor binding and oxidation by cytochrome p450cam.
    Westlake AC; Harford-Cross CF; Donovan J; Wong LL
    Eur J Biochem; 1999 Nov; 265(3):929-35. PubMed ID: 10518786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The catalytic pathway of cytochrome p450cam at atomic resolution.
    Schlichting I; Berendzen J; Chu K; Stock AM; Maves SA; Benson DE; Sweet RM; Ringe D; Petsko GA; Sligar SG
    Science; 2000 Mar; 287(5458):1615-22. PubMed ID: 10698731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Putidaredoxin-cytochrome P450cam interaction.
    Shimada H; Nagano S; Hori H; Ishimura Y
    J Inorg Biochem; 2001 Feb; 83(4):255-60. PubMed ID: 11293545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of reaction in cytochrome P450: Hydroxylation of camphor in P450cam.
    Zurek J; Foloppe N; Harvey JN; Mulholland AJ
    Org Biomol Chem; 2006 Nov; 4(21):3931-7. PubMed ID: 17047872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active-site hydration and water diffusion in cytochrome P450cam: a highly dynamic process.
    Miao Y; Baudry J
    Biophys J; 2011 Sep; 101(6):1493-503. PubMed ID: 21943431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.