These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 32551530)
1. High-performance Nonvolatile Organic Photoelectronic Transistor Memory Based on Bulk Heterojunction Structure. Lan S; Zhong J; Li E; Yan Y; Wu X; Chen Q; Lin W; Chen H; Guo T ACS Appl Mater Interfaces; 2020 Jul; 12(28):31716-31724. PubMed ID: 32551530 [TBL] [Abstract][Full Text] [Related]
2. Nonvolatile Transistor Memory with Self-Assembled Semiconducting Polymer Nanodomain Floating Gates. Wang W; Kim KL; Cho SM; Lee JH; Park C ACS Appl Mater Interfaces; 2016 Dec; 8(49):33863-33873. PubMed ID: 27960399 [TBL] [Abstract][Full Text] [Related]
3. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers. Li W; Guo F; Ling H; Zhang P; Yi M; Wang L; Wu D; Xie L; Huang W Adv Sci (Weinh); 2017 Aug; 4(8):1700007. PubMed ID: 28852619 [TBL] [Abstract][Full Text] [Related]
4. Solution-Processed Nonvolatile Organic Transistor Memory Based on Semiconductor Blends. Park Y; Baeg KJ; Kim C ACS Appl Mater Interfaces; 2019 Feb; 11(8):8327-8336. PubMed ID: 30707007 [TBL] [Abstract][Full Text] [Related]
5. Organic Transistor Nonvolatile Memory with Three-Level Information Storage and Optical Detection Functions. Xu T; Guo S; Qi W; Li S; Xu M; Wang W ACS Appl Mater Interfaces; 2020 May; 12(19):21952-21960. PubMed ID: 32319288 [TBL] [Abstract][Full Text] [Related]
6. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory. Li W; Guo F; Ling H; Liu H; Yi M; Zhang P; Wang W; Xie L; Huang W Small; 2018 Jan; 14(2):. PubMed ID: 29165914 [TBL] [Abstract][Full Text] [Related]
7. Speed up Ferroelectric Organic Transistor Memories by Using Two-Dimensional Molecular Crystalline Semiconductors. Song L; Wang Y; Gao Q; Guo Y; Wang Q; Qian J; Jiang S; Wu B; Wang X; Shi Y; Zheng Y; Li Y ACS Appl Mater Interfaces; 2017 May; 9(21):18127-18133. PubMed ID: 28493670 [TBL] [Abstract][Full Text] [Related]
8. Filter-Free Selective Light Monitoring by Organic Field-Effect Transistor Memories with a Tunable Blend Charge-Trapping Layer. Zhang LX; Gao X; Lv JJ; Zhong YN; Xu C; Xu JL; Wang SD ACS Appl Mater Interfaces; 2019 Oct; 11(43):40366-40371. PubMed ID: 31595743 [TBL] [Abstract][Full Text] [Related]
9. Organic field-effect transistor memory devices using discrete ferritin nanoparticle-based gate dielectrics. Kim BJ; Ko Y; Cho JH; Cho J Small; 2013 Nov; 9(22):3784-91. PubMed ID: 23666682 [TBL] [Abstract][Full Text] [Related]
10. A High-Performance Optical Memory Array Based on Inhomogeneity of Organic Semiconductors. Pei K; Ren X; Zhou Z; Zhang Z; Ji X; Chan PKL Adv Mater; 2018 Mar; 30(13):e1706647. PubMed ID: 29424125 [TBL] [Abstract][Full Text] [Related]
11. Unveiling the Photoinduced Recovery Mystery in Conjugated Polymer-Based Transistor Memory. Chen MN; Chang SW; Prakoso SP; Li YT; Chen KL; Chiu YC ACS Appl Mater Interfaces; 2021 Sep; 13(37):44656-44662. PubMed ID: 34506100 [TBL] [Abstract][Full Text] [Related]
12. Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory. Ling H; Lin J; Yi M; Liu B; Li W; Lin Z; Xie L; Bao Y; Guo F; Huang W ACS Appl Mater Interfaces; 2016 Jul; 8(29):18969-77. PubMed ID: 27363281 [TBL] [Abstract][Full Text] [Related]
13. High-performance nonvolatile organic transistor memory devices using the electrets of semiconducting blends. Chiu YC; Chen TY; Chen Y; Satoh T; Kakuchi T; Chen WC ACS Appl Mater Interfaces; 2014 Aug; 6(15):12780-8. PubMed ID: 24998629 [TBL] [Abstract][Full Text] [Related]
15. Flexible Nonvolatile Transistor Memory with Solution-Processed Transition Metal Dichalcogenides. Kim RH; Lee J; Kim KL; Cho SM; Kim DH; Park C Small; 2017 May; 13(20):. PubMed ID: 28371305 [TBL] [Abstract][Full Text] [Related]
16. Photoinduced-reset and multilevel storage transistor memories based on antimony-doped tin oxide nanoparticles floating gate. Jin R; Shi K; Qiu B; Huang S Nanotechnology; 2021 Oct; 33(2):. PubMed ID: 34619668 [TBL] [Abstract][Full Text] [Related]
17. Transistor memory devices with large memory windows, using multi-stacking of densely packed, hydrophobic charge trapping metal nanoparticle array. Cho I; Kim BJ; Ryu SW; Cho JH; Cho J Nanotechnology; 2014 Dec; 25(50):505604. PubMed ID: 25426661 [TBL] [Abstract][Full Text] [Related]
18. Highly reliable top-gated thin-film transistor memory with semiconducting, tunneling, charge-trapping, and blocking layers all of flexible polymers. Wang W; Hwang SK; Kim KL; Lee JH; Cho SM; Park C ACS Appl Mater Interfaces; 2015 May; 7(20):10957-65. PubMed ID: 25943406 [TBL] [Abstract][Full Text] [Related]
19. A floating-gate field-effect transistor memory device based on organic crystals with a built-in tunneling dielectric by a one-step growth strategy. Chen Z; Chen S; Jiang T; Chen S; Jia R; Xiao Y; Pan J; Jie J; Zhang X Nanoscale; 2024 Feb; 16(7):3721-3728. PubMed ID: 38294087 [TBL] [Abstract][Full Text] [Related]
20. Organic one-transistor-type nonvolatile memory gated with thin ionic liquid-polymer film for low voltage operation. Hwang SK; Park TJ; Kim KL; Cho SM; Jeong BJ; Park C ACS Appl Mater Interfaces; 2014 Nov; 6(22):20179-87. PubMed ID: 25341965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]