These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32551534)

  • 1. Ultrasensitive Monitoring of Museum Airborne Pollutants Using a Silver Nanoparticle Sensor Array.
    Li Z; Wang Z; Khan J; LaGasse MK; Suslick KS
    ACS Sens; 2020 Sep; 5(9):2783-2791. PubMed ID: 32551534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemically Induced Sintering of Nanoparticles.
    Li Z; Suslick KS
    Angew Chem Int Ed Engl; 2019 Oct; 58(40):14193-14196. PubMed ID: 31376238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplexed Analysis of Photochemical Oxidants Using a Nanoparticle-Based Optoelectronic Nose.
    Li Z; Zhang R; Lu X; Hu L; Wang X; Liu W; Cui C; Liu X
    Anal Chem; 2021 Oct; 93(41):13990-13997. PubMed ID: 34613714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Optoelectronic Nose.
    Li Z; Suslick KS
    Acc Chem Res; 2021 Feb; 54(4):950-960. PubMed ID: 33332086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ThThnated Development of a pH assisted AgNP-based colorimetric sensor Array for simultaneous identification of phosalone and azinphosmethyl pesticides.
    Orouji A; Abbasi-Moayed S; Hormozi-Nezhad MR
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():496-503. PubMed ID: 31077953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inkjet-printed paper-based colorimetric sensor array for the discrimination of volatile primary amines.
    Soga T; Jimbo Y; Suzuki K; Citterio D
    Anal Chem; 2013 Oct; 85(19):8973-8. PubMed ID: 24044503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence enhancement of silver nanoparticle hybrid probes and ultrasensitive detection of IgE.
    Li H; Qiang W; Vuki M; Xu D; Chen HY
    Anal Chem; 2011 Dec; 83(23):8945-52. PubMed ID: 21988285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Array-based microbial identification upon extracellular aminoglycoside residue sensing.
    Li X; Li B; Liu R; Dong Y; Wu Y
    Anal Bioanal Chem; 2021 Jul; 413(18):4689-4696. PubMed ID: 33893514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine.
    Alula MT; Karamchand L; Hendricks NR; Blackburn JM
    Anal Chim Acta; 2018 May; 1007():40-49. PubMed ID: 29405987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric aggregation assay based on array of gold and silver nanoparticles for simultaneous analysis of aflatoxins, ochratoxin and zearalenone by using chemometric analysis and paper based analytical devices.
    Sheini A
    Mikrochim Acta; 2020 Feb; 187(3):167. PubMed ID: 32055989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symmetry Breaking-Induced Plasmonic Mode Splitting in Coupled Gold-Silver Alloy Nanodisk Array for Ultrasensitive RGB Colorimetric Biosensing.
    Misbah I; Zhao F; Shih WC
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2273-2281. PubMed ID: 30569702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Indoor air quality of a museum in a subtropical climate: the Oscar Niemeyer museum in Curitiba, Brazil.
    Godoi RH; Carneiro BH; Paralovo SL; Campos VP; Tavares TM; Evangelista H; Van Grieken R; Godoi AF
    Sci Total Environ; 2013 May; 452-453():314-20. PubMed ID: 23528306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-Fabricated Gold and Silver Nanoparticle Based Plasmonic Sensors for Detection of Environmental Pollutants: An Overview.
    De A; Kalita D
    Crit Rev Anal Chem; 2023; 53(3):672-688. PubMed ID: 34477454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colorimetric detection of ammonia using smartphones based on localized surface plasmon resonance of silver nanoparticles.
    Amirjani A; Fatmehsari DH
    Talanta; 2018 Jan; 176():242-246. PubMed ID: 28917747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic study of colorimetric and absorbance sensor developed for trivalent yttrium (Y
    Ghodake G; Shinde S; Saratale RG; Kadam A; Saratale GD; Kim DY
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110436. PubMed ID: 31421402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a colorimetric sensor array based on monometallic and bimetallic nanoparticles for discrimination of triazole fungicides.
    Kalantari K; Fahimi-Kashani N; Hormozi-Nezhada MR
    Anal Bioanal Chem; 2022 Jul; 414(18):5297-5308. PubMed ID: 33855603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile colorimetric detection of Hg2+ based on anti-aggregation of silver nanoparticles.
    Duan J; Yin H; Wei R; Wang W
    Biosens Bioelectron; 2014 Jul; 57():139-42. PubMed ID: 24583318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sintering Inhibition of Silver Nanoparticle Films via AgCl Nanocrystal Formation.
    Öhlund T; Hummelgård M; Olin H
    Nanomaterials (Basel); 2017 Aug; 7(8):. PubMed ID: 28817099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonyl flavor compound-targeted colorimetric sensor array based on silver nitrate and o-phenylenediamine derivatives for the discrimination of Chinese Baijiu.
    Wu M; Chen H; Fan Y; Wang S; Hu Y; Liu J; Shen C; Zhou C; Fu H; She Y
    Food Chem; 2022 Mar; 372():131216. PubMed ID: 34638067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.