These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32551605)

  • 1. Examining the Generality of Metal-Ligand Cooperativity Across a Series of First-Row Transition Metals: Capture, Bond Activation, and Stabilization.
    Kiernicki JJ; Zeller M; Szymczak NK
    Inorg Chem; 2020 Jul; 59(13):9279-9286. PubMed ID: 32551605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Through the Looking Glass: Using the Lens of [SNS]-Pincer Ligands to Examine First-Row Metal Bifunctional Catalysts.
    Elsby MR; Baker RT
    Acc Chem Res; 2023 Apr; 56(7):798-809. PubMed ID: 36921212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A periodic walk: a series of first-row transition metal complexes with the pentadentate ligand PY5.
    Klein Gebbink RJ; Jonas RT; Goldsmith CR; Stack TD
    Inorg Chem; 2002 Sep; 41(18):4633-41. PubMed ID: 12206686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand redox activity and mixed valency in first-row transition-metal complexes containing tetrachlorocatecholate and radical tetrachlorosemiquinonate ligands.
    Pierpont CG
    Inorg Chem; 2011 Oct; 50(20):9766-72. PubMed ID: 21859145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirements for Lewis Acid-Mediated Capture and N-N Bond Cleavage of Hydrazine at Iron.
    Kiernicki JJ; Zeller M; Szymczak NK
    Inorg Chem; 2019 Jan; 58(2):1147-1154. PubMed ID: 30628782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrazine Capture and N-N Bond Cleavage at Iron Enabled by Flexible Appended Lewis Acids.
    Kiernicki JJ; Zeller M; Szymczak NK
    J Am Chem Soc; 2017 Dec; 139(50):18194-18197. PubMed ID: 29227655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of ammonia and hydrazine by electron rich Fe(ii) complexes supported by a dianionic pentadentate ligand platform through a common terminal Fe(iii) amido intermediate.
    Nurdin L; Yang Y; Neate PGN; Piers WE; Maron L; Neidig ML; Lin JB; Gelfand BS
    Chem Sci; 2020 Dec; 12(6):2231-2241. PubMed ID: 34163989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Configuring bonds between first-row transition metals.
    Eisenhart RJ; Clouston LJ; Lu CC
    Acc Chem Res; 2015 Nov; 48(11):2885-94. PubMed ID: 26492331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic and geometric structure effects on one-electron oxidation of first-row transition metals in the same ligand framework.
    Boniolo M; Chernev P; Cheah MH; Heizmann PA; Huang P; Shylin SI; Salhi N; Hossain MK; Gupta AK; Messinger J; Thapper A; Lundberg M
    Dalton Trans; 2021 Jan; 50(2):660-674. PubMed ID: 33325945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Late first-row transition metal complexes of a tetradentate pyridinophane ligand: electronic properties and reactivity implications.
    Khusnutdinova JR; Luo J; Rath NP; Mirica LM
    Inorg Chem; 2013 Apr; 52(7):3920-32. PubMed ID: 23517006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and electronic trends for five coordinate 1(st) row transition metal complexes: Mn(ii) to Zn(ii) captured in a bis(iminopyridine) framework.
    Jurca T; Ouanounou S; Shih WC; Ong TG; Yap GP; Korobkov I; Gorelsky S; Richeson D
    Dalton Trans; 2016 Sep; 45(36):14327-34. PubMed ID: 27539867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of a Redox-Active NNP-Type Pincer Ligand and Its Application to Electrocatalytic CO
    Talukdar K; Issa A; Jurss JW
    Front Chem; 2019; 7():330. PubMed ID: 31165057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative C-H Bond Activation by a Low-Spin d
    Gorgas N; White AJP; Crimmin MR
    J Am Chem Soc; 2022 May; 144(19):8770-8777. PubMed ID: 35512338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular designs for controlling the local environments around metal ions.
    Cook SA; Borovik AS
    Acc Chem Res; 2015 Aug; 48(8):2407-14. PubMed ID: 26181849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of an Inversion in Photophysical Tuning in a Systematic Study of Luminescent Triazole-Based Osmium(II) Complexes.
    Scattergood PA; Roberts J; Omar SAE; Elliott PIP
    Inorg Chem; 2019 Jul; 58(13):8607-8621. PubMed ID: 31180230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chelating Bis-silylenes As Powerful Ligands To Enable Unusual Low-Valent Main-Group Element Functions.
    Yao S; Saddington A; Xiong Y; Driess M
    Acc Chem Res; 2023 Feb; 56(4):475-488. PubMed ID: 36720115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling Nucleophilic Reactivity in High-Spin Fe(II) Imido Complexes: From Elementary Steps to Cooperative Catalysis.
    Gao Y; Smith JM
    Acc Chem Res; 2023 Dec; 56(23):3392-3403. PubMed ID: 37955993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions.
    Lv Z; Zheng W; Chen Z; Tang Z; Mo W; Yin G
    Dalton Trans; 2016 Jul; 45(28):11369-83. PubMed ID: 27333442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutral bis(alpha-iminopyridine)metal complexes of the first-row transition ions (Cr, Mn, Fe, Co, Ni, Zn) and their monocationic analogues: mixed valency involving a redox noninnocent ligand system.
    Lu CC; Bill E; Weyhermüller T; Bothe E; Wieghardt K
    J Am Chem Soc; 2008 Mar; 130(10):3181-97. PubMed ID: 18284242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revealing the Influence of Diverse Secondary Metal Cations on Redox-Active Palladium Complexes.
    Golwankar RR; Kumar A; Day VW; Blakemore JD
    Chemistry; 2022 Jul; 28(38):e202200344. PubMed ID: 35390210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.