BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32551623)

  • 1. An Overview on the Mechanisms and Applications of Enzyme Inhibition-Based Methods for Determination of Organophosphate and Carbamate Pesticides.
    Cao J; Wang M; Yu H; She Y; Cao Z; Ye J; Abd El-Aty AM; Hacımüftüoğlu A; Wang J; Lao S
    J Agric Food Chem; 2020 Jul; 68(28):7298-7315. PubMed ID: 32551623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples.
    Hossain SM; Luckham RE; McFadden MJ; Brennan JD
    Anal Chem; 2009 Nov; 81(21):9055-64. PubMed ID: 19788278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides.
    Qian S; Lin H
    Anal Chem; 2015; 87(10):5395-400. PubMed ID: 25913282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of organophosphate pesticide using polyaniline and carbon nanotubes composite based on acetylcholinesterase inhibition.
    Chen D; Chen C; Du D
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5662-6. PubMed ID: 21133088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinesterase-based dipstick assay for the detection of organophosphate and carbamate pesticides.
    No HY; Kim YA; Lee YT; Lee HS
    Anal Chim Acta; 2007 Jun; 594(1):37-43. PubMed ID: 17560383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi disposable reactor biosensors for detecting carbamate pesticides in water.
    Suwansa-ard S; Kanatharana P; Asawatreratanakul P; Limsakul C; Wongkittisuksa B; Thavarungkul P
    Biosens Bioelectron; 2005 Sep; 21(3):445-54. PubMed ID: 16076434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme-based optical biosensors for organophosphate class of pesticide detection.
    Kaur J; Singh PK
    Phys Chem Chem Phys; 2020 Jul; 22(27):15105-15119. PubMed ID: 32613964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyacrylic acid-coated cerium oxide nanoparticles: An oxidase mimic applied for colorimetric assay to organophosphorus pesticides.
    Zhang SX; Xue SF; Deng J; Zhang M; Shi G; Zhou T
    Biosens Bioelectron; 2016 Nov; 85():457-463. PubMed ID: 27208478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual detection of mixed organophosphorous pesticide using QD-AChE aerogel based microfluidic arrays sensor.
    Hu T; Xu J; Ye Y; Han Y; Li X; Wang Z; Sun D; Zhou Y; Ni Z
    Biosens Bioelectron; 2019 Jul; 136():112-117. PubMed ID: 31054518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides.
    Liu D; Chen W; Wei J; Li X; Wang Z; Jiang X
    Anal Chem; 2012 May; 84(9):4185-91. PubMed ID: 22475016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation pretreatment by calcium hypochlorite to improve the sensitivity of enzyme inhibition-based detection of organophosphorus pesticides.
    Yang X; Dai J; Yang L; Ma M; Zhao SJ; Chen XG; Xiao H
    J Sci Food Agric; 2018 May; 98(7):2624-2631. PubMed ID: 29072792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A highly sensitive acetylcholinesterase electrochemical biosensor based on Au-Tb alloy nanospheres for determining organophosphate pesticides.
    Yang Y; Zhao Y; You T; Liu Q; Gao Y; Chen H; Yin P
    Nanotechnology; 2021 Jul; 32(42):. PubMed ID: 34256363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical biosensor technology: application to pesticide detection.
    Palchetti I; Laschi S; Mascini M
    Methods Mol Biol; 2009; 504():115-26. PubMed ID: 19159094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-sensing of organophosphorus pesticides: A review.
    Pundir CS; Malik A; Preety
    Biosens Bioelectron; 2019 Sep; 140():111348. PubMed ID: 31153016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on characteristic of biosensors associated with cholinesterase for detection of pesticide residues].
    Zhang YD; Yang BL
    Wei Sheng Yan Jiu; 2006 Mar; 35(2):250-3. PubMed ID: 16758984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Displaying of acetylcholinesterase mutants on surface of yeast for ultra-trace fluorescence detection of organophosphate pesticides with gold nanoclusters.
    Liang B; Han L
    Biosens Bioelectron; 2020 Jan; 148():111825. PubMed ID: 31677527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitive biosensing of organophosphate pesticides using enzyme mimics of magnetic ZIF-8.
    Bagheri N; Khataee A; Hassanzadeh J; Habibi B
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 209():118-125. PubMed ID: 30384017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes.
    Cesarino I; Moraes FC; Lanza MR; Machado SA
    Food Chem; 2012 Dec; 135(3):873-9. PubMed ID: 22953799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical Evaluation of Carbamate and Organophosphate Pesticides in Human and Environmental Matrices: A Review.
    Mdeni NL; Adeniji AO; Okoh AI; Okoh OO
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mechanism-based 3D-QSAR approach for classification and prediction of acetylcholinesterase inhibitory potency of organophosphate and carbamate analogs.
    Lee S; Barron MG
    J Comput Aided Mol Des; 2016 Apr; 30(4):347-63. PubMed ID: 27055524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.