These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 32551633)
1. Solvation Induced Ring Puckering Effect in Fluorinated Prolines and Its Inclusion in Classical Force Fields. Muralidharan A; Schmidt JR; Yethiraj A J Phys Chem B; 2020 Jul; 124(28):5899-5906. PubMed ID: 32551633 [TBL] [Abstract][Full Text] [Related]
2. Synthetic biology of proteins: tuning GFPs folding and stability with fluoroproline. Steiner T; Hess P; Bae JH; Wiltschi B; Moroder L; Budisa N PLoS One; 2008 Feb; 3(2):e1680. PubMed ID: 18301757 [TBL] [Abstract][Full Text] [Related]
3. Conformational preferences of proline analogues with different ring size. Jhon JS; Kang YK J Phys Chem B; 2007 Apr; 111(13):3496-507. PubMed ID: 17388495 [TBL] [Abstract][Full Text] [Related]
4. Understanding the role of stereoelectronic effects in determining collagen stability. 1. A quantum mechanical study of proline, hydroxyproline, and fluoroproline dipeptide analogues in aqueous solution. Improta R; Benzi C; Barone V J Am Chem Soc; 2001 Dec; 123(50):12568-77. PubMed ID: 11741421 [TBL] [Abstract][Full Text] [Related]
5. Puckering transition of proline residue in water. Kang YK J Phys Chem B; 2007 Sep; 111(35):10550-6. PubMed ID: 17696525 [TBL] [Abstract][Full Text] [Related]
6. Locked conformations for proline pyrrolidine ring: synthesis and conformational analysis of cis- and trans-4-tert-butylprolines. Koskinen AM; Helaja J; Kumpulainen ET; Koivisto J; Mansikkamäki H; Rissanen K J Org Chem; 2005 Aug; 70(16):6447-53. PubMed ID: 16050708 [TBL] [Abstract][Full Text] [Related]
7. Quantum mechanical study of the conformational behavior of proline and 4R-hydroxyproline dipeptide analogues in vacuum and in aqueous solution. Benzi C; Improta R; Scalmani G; Barone V J Comput Chem; 2002 Feb; 23(3):341-50. PubMed ID: 11908497 [TBL] [Abstract][Full Text] [Related]
8. Conformational preferences and cis-trans isomerization of azaproline residue. Kang YK; Byun BJ J Phys Chem B; 2007 May; 111(19):5377-85. PubMed ID: 17439267 [TBL] [Abstract][Full Text] [Related]
14. Conformations of proline analogues having double bonds in the ring. Flores-Ortega A; Casanovas J; Zanuy D; Nussinov R; Alemán C J Phys Chem B; 2007 May; 111(19):5475-82. PubMed ID: 17458993 [TBL] [Abstract][Full Text] [Related]
15. Conformational preference and cis-trans isomerization of 4(R)-substituted proline residues. Song IK; Kang YK J Phys Chem B; 2006 Feb; 110(4):1915-27. PubMed ID: 16471763 [TBL] [Abstract][Full Text] [Related]
16. Cis-trans isomerization and puckering of proline residue. Kang YK; Choi HY Biophys Chem; 2004 Oct; 111(2):135-42. PubMed ID: 15381311 [TBL] [Abstract][Full Text] [Related]
17. The impact of pyrrolidine hydroxylation on the conformation of proline-containing peptides. Taylor CM; Hardré R; Edwards PJ J Org Chem; 2005 Feb; 70(4):1306-15. PubMed ID: 15704965 [TBL] [Abstract][Full Text] [Related]
18. Conformational preferences and cis-trans isomerization of L-3,4-dehydroproline residue. Kang YK; Park HS Biopolymers; 2009; 92(5):387-98. PubMed ID: 19373924 [TBL] [Abstract][Full Text] [Related]
19. Puckering transition of 4-substituted proline residues. Song IK; Kang YK J Phys Chem B; 2005 Sep; 109(35):16982-7. PubMed ID: 16853162 [TBL] [Abstract][Full Text] [Related]
20. Rational design of protein stability: effect of (2S,4R)-4-fluoroproline on the stability and folding pathway of ubiquitin. Crespo MD; Rubini M PLoS One; 2011; 6(5):e19425. PubMed ID: 21625626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]