These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32551661)

  • 1. Coplanar Electrowetting-Induced Droplet Detachment from Radially Symmetric Electrodes.
    Burkhart CT; Maki KL; Schertzer MJ
    Langmuir; 2020 Jul; 36(28):8129-8136. PubMed ID: 32551661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting.
    Hong J; Lee SJ
    Lab Chip; 2015 Feb; 15(3):900-7. PubMed ID: 25500988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of Electrowetting-Induced Droplet Detachment: A Study of Droplet Oscillations on Solid Surfaces.
    Theodorou NT; Sourais AG; Papathanasiou AG
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trampolining of Droplets on Hydrophobic Surfaces Using Electrowetting.
    Wang Z; Liu X; Wang L; Zhao C; Zhou D; Wei J
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrowetting-induced droplet detachment from hydrophobic surfaces.
    Lee SJ; Hong J; Kang KH; Kang IS; Lee SJ
    Langmuir; 2014 Feb; 30(7):1805-11. PubMed ID: 24490590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: A full-scaled simulation study considering surface-coupled electrocapillary two-phase flow.
    Liu W; Tao Y; Ge Z; Zhou J; Xu R; Ren Y
    Electrophoresis; 2021 Apr; 42(7-8):950-966. PubMed ID: 33119900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetric electrowetting--moving droplets by a square wave.
    Fan SK; Yang H; Wang TT; Hsu W
    Lab Chip; 2007 Oct; 7(10):1330-5. PubMed ID: 17896018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet Velocity in an Electrowetting on Dielectric Digital Microfluidic Device.
    Nahar MM; Nikapitiya JB; You SM; Moon H
    Micromachines (Basel); 2016 Apr; 7(4):. PubMed ID: 30407443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transitional Electrodes in Electrowetting-Based Droplet Dispensing.
    Wang W; Cai Q; Xu S; Chen X
    Biosensors (Basel); 2024 Jan; 14(1):. PubMed ID: 38248421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of Electrowetting-Induced Droplet Detachment and Jumping over Topographically Micro-Structured Surfaces.
    Sourais AG; Papathanasiou AG
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34063916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic-surfactant-mediated electro-dewetting for digital microfluidics.
    Li J; Ha NS; Liu T'; van Dam RM; 'cj' Kim CJ
    Nature; 2019 Aug; 572(7770):507-510. PubMed ID: 31435058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving droplets between closed and open microfluidic systems.
    Wang W; Jones TB
    Lab Chip; 2015 May; 15(10):2201-12. PubMed ID: 25850701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphogenesis-inspired two-dimensional electrowetting in droplet networks.
    El-Beyrouthy J; Makhoul-Mansour M; Gulle J; Freeman E
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 37074106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Droplet manipulation with polarity-dependent low-voltage electrowetting on an open slippery liquid infused porous surface.
    He X; Zhang J; Zhang X; Deng Y
    Soft Matter; 2019 Jul; 15(26):5211-5219. PubMed ID: 31149699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrowetting based local sensing of liquid properties using relaxation dynamics of stretched liquid interface.
    Bansal S; Sen P
    J Colloid Interface Sci; 2020 May; 568():8-15. PubMed ID: 32086011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Re-entrant Cavities Enhance Resilience to the Cassie-to-Wenzel State Transition on Superhydrophobic Surfaces during Electrowetting.
    Roy R; Weibel JA; Garimella SV
    Langmuir; 2018 Oct; 34(43):12787-12793. PubMed ID: 30277779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low voltage picoliter droplet manipulation utilizing electrowetting-on-dielectric platforms.
    Lin YY; Welch ER; Fair RB
    Sens Actuators B Chem; 2012 Oct; 173():338-345. PubMed ID: 23559693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrowetting of nonwetting liquids and liquid marbles.
    McHale G; Herbertson DL; Elliott SJ; Shirtcliffe NJ; Newton MI
    Langmuir; 2007 Jan; 23(2):918-24. PubMed ID: 17209652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A droplet energy harvesting and actuation system for self-powered digital microfluidics.
    Chen G; Liu X; Li S; Dong M; Jiang D
    Lab Chip; 2018 Mar; 18(7):1026-1034. PubMed ID: 29536066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.