These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32551681)

  • 1. Bosonic Charge Carriers in Necklace-like Graphene Nanoribbons.
    Pereira Júnior ML; E Silva GM; Ribeiro Junior LA
    J Phys Chem Lett; 2020 Jul; 11(14):5538-5543. PubMed ID: 32551681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability conditions of armchair graphene nanoribbon bipolarons.
    Abreu AVP; Ribeiro Junior LA; Silva GG; Pereira Junior ML; Enders BG; Fonseca ALA; E Silva GM
    J Mol Model; 2019 Jul; 25(8):245. PubMed ID: 31342176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom-Up Synthesis of Necklace-Like Graphene Nanoribbons.
    Schwab MG; Narita A; Osella S; Hu Y; Maghsoumi A; Mavrinsky A; Pisula W; Castiglioni C; Tommasini M; Beljonne D; Feng X; Müllen K
    Chem Asian J; 2015 Oct; 10(10):2134-8. PubMed ID: 26062724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Observation of Strong Exciton Effects in Graphene Nanoribbons.
    Tries A; Osella S; Zhang P; Xu F; Ramanan C; Kläui M; Mai Y; Beljonne D; Wang HI
    Nano Lett; 2020 May; 20(5):2993-3002. PubMed ID: 32207957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport of Polarons in Graphene Nanoribbons.
    Ribeiro LA; da Cunha WF; Fonseca AL; e Silva GM; Stafström S
    J Phys Chem Lett; 2015 Feb; 6(3):510-4. PubMed ID: 26261972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bipolaron Dynamics in Graphene Nanoribbons.
    Silva GG; Ribeiro Junior LA; Pereira Junior ML; Fonseca ALA; de Sousa Júnior RT; Silva GME
    Sci Rep; 2019 Feb; 9(1):2909. PubMed ID: 30814607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bond length pattern associated with charge carriers in armchair graphene nanoribbons.
    Teixeira JF; de Oliveira Neto PH; da Cunha WF; Ribeiro LA; E Silva GM
    J Mol Model; 2017 Sep; 23(10):293. PubMed ID: 28951991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic and transport properties and physical field coupling effects for net-Y nanoribbons.
    Hu JK; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2019 Nov; 30(48):485703. PubMed ID: 31426048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice-oriented catalytic growth of graphene nanoribbons on heteroepitaxial nickel films.
    Ago H; Tanaka I; Ogawa Y; Yunus RM; Tsuji M; Hibino H
    ACS Nano; 2013 Dec; 7(12):10825-33. PubMed ID: 24206265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth gap tuning strategy for cove-type graphene nanoribbons.
    de Sousa Araújo Cassiano T; Monteiro FF; Evaristo de Sousa L; Magela E Silva G; de Oliveira Neto PH
    RSC Adv; 2020 Jul; 10(45):26937-26943. PubMed ID: 35515758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N = 9 Armchair Graphene Nanoribbons.
    Chen Z; Wang HI; Teyssandier J; Mali KS; Dumslaff T; Ivanov I; Zhang W; Ruffieux P; Fasel R; Räder HJ; Turchinovich D; De Feyter S; Feng X; Kläui M; Narita A; Bonn M; Müllen K
    J Am Chem Soc; 2017 Mar; 139(10):3635-3638. PubMed ID: 28248492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helically Coiled Graphene Nanoribbons.
    Daigle M; Miao D; Lucotti A; Tommasini M; Morin JF
    Angew Chem Int Ed Engl; 2017 May; 56(22):6213-6217. PubMed ID: 28267293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship Between Stress Modulated Metallicity and Plasmon in Graphene Nanoribbons.
    Zhang N; Yang Z; Zhang Z; Wang J
    Chemphyschem; 2023 Dec; 24(24):e202300348. PubMed ID: 37731169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenyl Functionalization of Atomically Precise Graphene Nanoribbons for Engineering Inter-ribbon Interactions and Graphene Nanopores.
    Shekhirev M; Zahl P; Sinitskii A
    ACS Nano; 2018 Aug; 12(8):8662-8669. PubMed ID: 30085655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polaron Properties in Armchair Graphene Nanoribbons.
    da Cunha WF; Acioli PH; de Oliveira Neto PH; Gargano R; E Silva GM
    J Phys Chem A; 2016 Jul; 120(27):4893-900. PubMed ID: 26918483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge transport mechanism in networks of armchair graphene nanoribbons.
    Richter N; Chen Z; Tries A; Prechtl T; Narita A; Müllen K; Asadi K; Bonn M; Kläui M
    Sci Rep; 2020 Feb; 10(1):1988. PubMed ID: 32029795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small Size, Big Impact: Recent Progress in Bottom-Up Synthesized Nanographenes for Optoelectronic and Energy Applications.
    Liu Z; Fu S; Liu X; Narita A; Samorì P; Bonn M; Wang HI
    Adv Sci (Weinh); 2022 Jul; 9(19):e2106055. PubMed ID: 35218329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bulk properties of solution-synthesized chevron-like graphene nanoribbons.
    Vo TH; Shekhirev M; Lipatov A; Korlacki RA; Sinitskii A
    Faraday Discuss; 2014; 173():105-13. PubMed ID: 25465679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective Mass of Quasiparticles in Armchair Graphene Nanoribbons.
    Fischer MM; de Sousa LE; Luiz E Castro L; Ribeiro LA; de Sousa RT; Magela E Silva G; de Oliveira Neto PH
    Sci Rep; 2019 Nov; 9(1):17990. PubMed ID: 31784579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.