BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32552217)

  • 1. Noninvasive Monitoring of Choroid-Retina Autofluorescence and Intravitreal Nanoparticle Disposition in Royal College of Surgeon Rats of Different Ages and Retinal Thinning.
    Patil MA; Kompella UB
    J Ocul Pharmacol Ther; 2020; 36(6):458-466. PubMed ID: 32552217
    [No Abstract]   [Full Text] [Related]  

  • 2. Comparison of suprachoroidal drug delivery with subconjunctival and intravitreal routes using noninvasive fluorophotometry.
    Tyagi P; Kadam RS; Kompella UB
    PLoS One; 2012; 7(10):e48188. PubMed ID: 23118950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suprachoroidal delivery in a rabbit ex vivo eye model: influence of drug properties, regional differences in delivery, and comparison with intravitreal and intracameral routes.
    Kadam RS; Williams J; Tyagi P; Edelhauser HF; Kompella UB
    Mol Vis; 2013; 19():1198-210. PubMed ID: 23734089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration.
    Amrite AC; Edelhauser HF; Singh SR; Kompella UB
    Mol Vis; 2008 Jan; 14():150-60. PubMed ID: 18334929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacokinetics of intraocular drug delivery by periocular injections using ocular fluorophotometry.
    Ghate D; Brooks W; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2230-7. PubMed ID: 17460284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection.
    Huang D; Chen YS; Thakur SS; Rupenthal ID
    Eur J Pharm Biopharm; 2017 Oct; 119():125-136. PubMed ID: 28602870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained Connexin43 Mimetic Peptide Release From Loaded Nanoparticles Reduces Retinal and Choroidal Photodamage.
    Mat Nor N; Guo CX; Rupenthal ID; Chen YS; Green CR; Acosta ML
    Invest Ophthalmol Vis Sci; 2018 Jul; 59(8):3682-3693. PubMed ID: 30029255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina.
    Kim H; Robinson SB; Csaky KG
    Pharm Res; 2009 Feb; 26(2):329-37. PubMed ID: 18958405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo ocular fluorophotometry: delivery of fluoresceinated dextrans via transscleral diffusion in rabbits.
    Berezovsky DE; Patel SR; McCarey BE; Edelhauser HF
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7038-45. PubMed ID: 21791594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolonged protective effect of basic fibroblast growth factor-impregnated nanoparticles in royal college of surgeons rats.
    Sakai T; Kuno N; Takamatsu F; Kimura E; Kohno H; Okano K; Kitahara K
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3381-7. PubMed ID: 17591912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreceptor rescue of pigment epithelium-derived factor-impregnated nanoparticles in Royal College of Surgeons rats.
    Akiyama G; Sakai T; Kuno N; Kimura E; Okano K; Kohno H; Tsuneoka H
    Mol Vis; 2012; 18():3079-86. PubMed ID: 23304068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection.
    Koo H; Moon H; Han H; Na JH; Huh MS; Park JH; Woo SJ; Park KH; Kwon IC; Kim K; Kim H
    Biomaterials; 2012 Apr; 33(12):3485-93. PubMed ID: 22322197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye.
    Patel SR; Berezovsky DE; McCarey BE; Zarnitsyn V; Edelhauser HF; Prausnitz MR
    Invest Ophthalmol Vis Sci; 2012 Jul; 53(8):4433-41. PubMed ID: 22669719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo MRI assessment of bioactive magnetic iron oxide/human serum albumin nanoparticle delivery into the posterior segment of the eye in a rat model of retinal degeneration.
    Tzameret A; Ketter-Katz H; Edelshtain V; Sher I; Corem-Salkmon E; Levy I; Last D; Guez D; Mardor Y; Margel S; Rotenstrich Y
    J Nanobiotechnology; 2019 Jan; 17(1):3. PubMed ID: 30630490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification of microvascular change of retinal degeneration in Royal College of Surgeons rats using high-resolution spectral domain optical coherence tomography angiography.
    Zhang ZJ; Wu YR; Chien Y; Chen Y; Chiou SH; Chen SJ; Syu JP; Kuo WC
    J Biomed Opt; 2023 Oct; 28(10):106001. PubMed ID: 37841506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of eye pigmentation on transscleral drug delivery.
    Cheruvu NP; Amrite AC; Kompella UB
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):333-41. PubMed ID: 18172110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vivo Fluorescence Retinal Imaging Following AAV2-Mediated Gene Delivery in the Rat Retina.
    Lee JY; Hwang Y; Kim JH; Kim YS; Jung BK; Kim P; Lee H
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3390-6. PubMed ID: 27367507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy.
    Tzameret A; Sher I; Belkin M; Treves AJ; Meir A; Nagler A; Levkovitch-Verbin H; Barshack I; Rosner M; Rotenstreich Y
    Exp Eye Res; 2014 Jan; 118():135-44. PubMed ID: 24239509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled phenylalanine-α,β-dehydrophenylalanine nanotubes for sustained intravitreal delivery of a multi-targeted tyrosine kinase inhibitor.
    Panda JJ; Yandrapu S; Kadam RS; Chauhan VS; Kompella UB
    J Control Release; 2013 Dec; 172(3):1151-60. PubMed ID: 24075925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing sodium iodate-induced outer retinal changes in rats using confocal scanning laser ophthalmoscopy and optical coherence tomography.
    Yang Y; Ng TK; Ye C; Yip YW; Law K; Chan SO; Pang CP
    Invest Ophthalmol Vis Sci; 2014 Mar; 55(3):1696-705. PubMed ID: 24526437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.