BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

520 related articles for article (PubMed ID: 32552445)

  • 1. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?
    Autrup H; Barile FA; Berry SC; Blaauboer BJ; Boobis A; Bolt H; Borgert CJ; Dekant W; Dietrich D; Domingo JL; Gori GB; Greim H; Hengstler J; Kacew S; Marquardt H; Pelkonen O; Savolainen K; Heslop-Harrison P; Vermeulen NP
    J Toxicol Environ Health A; 2020 Jul; 83(13-14):485-494. PubMed ID: 32552445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?
    Autrup H; Barile FA; Berry SC; Blaauboer BJ; Boobis A; Bolt H; Borgert CJ; Dekant W; Dietrich D; Domingo JL; Gori GB; Greim H; Hengstler J; Kacew S; Marquardt H; Pelkonen O; Savolainen K; Heslop-Harrison P; Vermeulen NP
    Toxicol In Vitro; 2020 Sep; 67():104861. PubMed ID: 32360643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity: how to evaluate the risk of the S-EDCs?
    Autrup H; Barile FA; Berry SC; Blaauboer BJ; Boobis A; Bolt H; Borgert CJ; Dekant W; Dietrich D; Domingo JL; Gori GB; Greim H; Hengstler J; Kacew S; Marquardt H; Pelkonen O; Savolainen K; Heslop-Harrison P; Vermeulen NP
    Arch Toxicol; 2020 Jul; 94(7):2549-2557. PubMed ID: 32514609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?
    Autrup H; Barile FA; Berry SC; Blaauboer BJ; Boobis A; Bolt H; Borgert CJ; Dekant W; Dietrich D; Domingo JL; Gori GB; Greim H; Hengstler J; Kacew S; Marquardt H; Pelkonen O; Savolainen K; Heslop-Harrison P; Vermeulen NP
    Environ Toxicol Pharmacol; 2020 Aug; 78():103396. PubMed ID: 32391796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?
    Autrup H; Barile FA; Berry SC; Blaauboer BJ; Boobis A; Bolt H; Borgert CJ; Dekant W; Dietrich D; Domingo JL; Gori GB; Greim H; Hengstler J; Kacew S; Marquardt H; Pelkonen O; Savolainen K; Heslop-Harrison P; Vermeulen NP
    Chem Biol Interact; 2020 Aug; 326():109099. PubMed ID: 32370863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?
    Autrup H; Barile FA; Berry SC; Blaauboer BJ; Boobis A; Bolt H; Hengstler J; Borgert CJ; Dekant W; Dietrich D; Domingo JL; Gori GB; Greim H; Kacew S; Marquardt H; Pelkonen O; Savolainen K; Heslop-Harrison P; Vermeulen NP
    Food Chem Toxicol; 2020 Aug; 142():111349. PubMed ID: 32360905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?
    Autrup H; Barile FA; Berry SC; Blaauboer BJ; Boobis A; Bolt H; Borgert CJ; Dekant W; Dietrich D; Domingo JL; Gori GB; Greim H; Hengstler J; Kacew S; Marquardt H; Pelkonen O; Savolainen K; Heslop-Harrison P; Vermeulen NP
    Toxicol Lett; 2020 Oct; 331():259-264. PubMed ID: 32360654
    [No Abstract]   [Full Text] [Related]  

  • 8. Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms.
    Wang CF; Tian Y
    Environ Pollut; 2015 Nov; 206():195-201. PubMed ID: 26184583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible relationship between endocrine disrupting chemicals and hormone dependent gynecologic cancers.
    Dogan S; Simsek T
    Med Hypotheses; 2016 Jul; 92():84-7. PubMed ID: 27241264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fifteen years after "Wingspread"--environmental endocrine disrupters and human and wildlife health: where we are today and where we need to go.
    Hotchkiss AK; Rider CV; Blystone CR; Wilson VS; Hartig PC; Ankley GT; Foster PM; Gray CL; Gray LE
    Toxicol Sci; 2008 Oct; 105(2):235-59. PubMed ID: 18281716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Editorial on editorial: Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs?
    Toxicol In Vitro; 2020 Sep; 67():104862. PubMed ID: 32360642
    [No Abstract]   [Full Text] [Related]  

  • 12. Endocrine disruptors: present issues, future directions.
    Crews D; Willingham E; Skipper JK
    Q Rev Biol; 2000 Sep; 75(3):243-60. PubMed ID: 11008698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroendocrine and behavioral effects of embryonic exposure to endocrine disrupting chemicals in birds.
    Ottinger MA; Lavoie E; Thompson N; Barton A; Whitehouse K; Barton M; Abdelnabi M; Quinn M; Panzica G; Viglietti-Panzica C
    Brain Res Rev; 2008 Mar; 57(2):376-85. PubMed ID: 18006066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals.
    Vandenberg LN; Ågerstrand M; Beronius A; Beausoleil C; Bergman Å; Bero LA; Bornehag CG; Boyer CS; Cooper GS; Cotgreave I; Gee D; Grandjean P; Guyton KZ; Hass U; Heindel JJ; Jobling S; Kidd KA; Kortenkamp A; Macleod MR; Martin OV; Norinder U; Scheringer M; Thayer KA; Toppari J; Whaley P; Woodruff TJ; Rudén C
    Environ Health; 2016 Jul; 15(1):74. PubMed ID: 27412149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Male pubertal development: are endocrine-disrupting compounds shifting the norms?
    Zawatski W; Lee MM
    J Endocrinol; 2013; 218(2):R1-12. PubMed ID: 23709001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are endocrine disrupting compounds environmental risk factors for autism spectrum disorder?
    Moosa A; Shu H; Sarachana T; Hu VW
    Horm Behav; 2018 May; 101():13-21. PubMed ID: 29042182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA microarrays for detecting endocrine-disrupting compounds.
    Francois E; Wang DY; Fulthorpe R; Liss SN; Edwards EA
    Biotechnol Adv; 2003 Dec; 22(1-2):17-26. PubMed ID: 14623040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methodological issues in human studies of endocrine disrupting chemicals.
    Lee DH; Jacobs DR
    Rev Endocr Metab Disord; 2015 Dec; 16(4):289-97. PubMed ID: 26880303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Approaches for Characterizing the Endocrine-Disrupting Effects of Environmental Chemicals in Fish.
    Celino-Brady FT; Lerner DT; Seale AP
    Front Endocrinol (Lausanne); 2020; 11():619361. PubMed ID: 33716955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endocrine disrupting chemicals and breast cancer: a systematic review of epidemiological studies.
    Wan MLY; Co VA; El-Nezami H
    Crit Rev Food Sci Nutr; 2022; 62(24):6549-6576. PubMed ID: 33819127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.