These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 32552519)
1. Transcriptome Profiling Data of Srivastava DA; Arya GC; Pandaranayaka EP; Manasherova E; Prusky DB; Elad Y; Frenkel O; Harel A Mol Plant Microbe Interact; 2020 Sep; 33(9):1103-1107. PubMed ID: 32552519 [No Abstract] [Full Text] [Related]
2. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration. Zhang MZ; Sun CH; Liu Y; Feng HQ; Chang HW; Cao SN; Li GH; Yang S; Hou J; Zhu-Salzman K; Zhang H; Qin QM Mol Plant Pathol; 2020 Jun; 21(6):834-853. PubMed ID: 32301267 [TBL] [Abstract][Full Text] [Related]
3. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea. Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862 [TBL] [Abstract][Full Text] [Related]
4. Silencing of the tomato phosphatidylinositol-phospholipase C2 (SlPLC2) reduces plant susceptibility to Botrytis cinerea. Gonorazky G; Guzzo MC; Abd-El-Haliem AM; Joosten MH; Laxalt AM Mol Plant Pathol; 2016 Dec; 17(9):1354-1363. PubMed ID: 26868615 [TBL] [Abstract][Full Text] [Related]
5. Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea. Crespo-Salvador Ó; Escamilla-Aguilar M; López-Cruz J; López-Rodas G; González-Bosch C Plant Cell Rep; 2018 Jan; 37(1):153-166. PubMed ID: 29119291 [TBL] [Abstract][Full Text] [Related]
6. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea. Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470 [TBL] [Abstract][Full Text] [Related]
7. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction. Seifi H; De Vleesschauwer D; Aziz A; Höfte M Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937 [TBL] [Abstract][Full Text] [Related]
8. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves. Jin W; Wu F BMC Plant Biol; 2015 Jan; 15():1. PubMed ID: 25592487 [TBL] [Abstract][Full Text] [Related]
9. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress. Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938 [TBL] [Abstract][Full Text] [Related]
10. miR319c acts as a positive regulator of tomato against Botrytis cinerea infection by targeting TCP29. Wu F; Qi J; Meng X; Jin W Plant Sci; 2020 Nov; 300():110610. PubMed ID: 33180702 [TBL] [Abstract][Full Text] [Related]
12. Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool. Lecompte F; Nicot PC; Ripoll J; Abro MA; Raimbault AK; Lopez-Lauri F; Bertin N Ann Bot; 2017 Mar; 119(5):931-943. PubMed ID: 28065923 [TBL] [Abstract][Full Text] [Related]
13. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants. Zhang Y; Zhang Y; Qiu D; Zeng H; Guo L; Yang X Biochem Biophys Res Commun; 2015 Feb; 457(4):627-34. PubMed ID: 25613865 [TBL] [Abstract][Full Text] [Related]
14. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato. Flors V; Leyva Mde L; Vicedo B; Finiti I; Real MD; García-Agustín P; Bennett AB; González-Bosch C Plant J; 2007 Dec; 52(6):1027-40. PubMed ID: 17916112 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas9-mediated phospholipase C 2 knock-out tomato plants are more resistant to Botrytis cinerea. Perk EA; Arruebarrena Di Palma A; Colman S; Mariani O; Cerrudo I; D'Ambrosio JM; Robuschi L; Pombo MA; Rosli HG; Villareal F; Laxalt AM Planta; 2023 May; 257(6):117. PubMed ID: 37173533 [TBL] [Abstract][Full Text] [Related]
16. Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors. Soulie MC; Koka SM; Floch K; Vancostenoble B; Barbe D; Daviere A; Soubigou-Taconnat L; Brunaud V; Poussereau N; Loisel E; Devallee A; Expert D; Fagard M Mol Plant Pathol; 2020 Nov; 21(11):1436-1450. PubMed ID: 32939948 [TBL] [Abstract][Full Text] [Related]
17. Molecular mechanism of modulating miR482b level in tomato with botrytis cinerea infection. Wu F; Xu J; Gao T; Huang D; Jin W BMC Plant Biol; 2021 Oct; 21(1):496. PubMed ID: 34706648 [TBL] [Abstract][Full Text] [Related]
18. The polyphagous plant pathogenic fungus Botrytis cinerea encompasses host-specialized and generalist populations. Mercier A; Carpentier F; Duplaix C; Auger A; Pradier JM; Viaud M; Gladieux P; Walker AS Environ Microbiol; 2019 Dec; 21(12):4808-4821. PubMed ID: 31608584 [TBL] [Abstract][Full Text] [Related]
19. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways. López-Cruz J; Óscar CS; Emma FC; Pilar GA; Carmen GB Mol Plant Pathol; 2017 Jan; 18(1):16-31. PubMed ID: 26780422 [TBL] [Abstract][Full Text] [Related]
20. Flux of nitric oxide between the necrotrophic pathogen Botrytis cinerea and the host plant. Turrion-Gomez JL; Benito EP Mol Plant Pathol; 2011 Aug; 12(6):606-16. PubMed ID: 21722298 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]