BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 32552577)

  • 21. Tacrolimus trough and dose intra-patient variability and CYP3A5 genotype: Effects on acute rejection and graft failure in European American and African American kidney transplant recipients.
    Seibert SR; Schladt DP; Wu B; Guan W; Dorr C; Remmel RP; Matas AJ; Mannon RB; Israni AK; Oetting WS; Jacobson PA
    Clin Transplant; 2018 Dec; 32(12):e13424. PubMed ID: 30318646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CYP3A5 *1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in Japanese renal transplant recipients.
    Satoh S; Saito M; Inoue T; Kagaya H; Miura M; Inoue K; Komatsuda A; Tsuchiya N; Suzuki T; Habuchi T
    Eur J Clin Pharmacol; 2009 May; 65(5):473-81. PubMed ID: 19125240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wuzhi Tablet (
    Li J; Chen S; Qin X; Fu Q; Bi H; Zhang Y; Wang X; Liu L; Wang C; Huang M
    Drug Metab Dispos; 2017 Nov; 45(11):1114-1119. PubMed ID: 28864749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic effects of CYP3A5 polymorphism on dose requirement and trough concentration of tacrolimus in renal transplant recipients.
    Chen P; Li J; Li J; Deng R; Fu Q; Chen J; Huang M; Chen X; Wang C
    J Clin Pharm Ther; 2017 Feb; 42(1):93-97. PubMed ID: 27885697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of CYP3A5 phenotype on tacrolimus time in therapeutic range and clinical outcomes in pediatric renal and heart transplant recipients.
    Leino AD; Park JM; Pasternak AL
    Pharmacotherapy; 2021 Aug; 41(8):649-657. PubMed ID: 34129685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Randomized Controlled Trial Comparing the Efficacy of Cyp3a5 Genotype-Based With Body-Weight-Based Tacrolimus Dosing After Living Donor Kidney Transplantation.
    Shuker N; Bouamar R; van Schaik RH; Clahsen-van Groningen MC; Damman J; Baan CC; van de Wetering J; Rowshani AT; Weimar W; van Gelder T; Hesselink DA
    Am J Transplant; 2016 Jul; 16(7):2085-96. PubMed ID: 26714287
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of combinational CYP3A5 6986A>G polymorphism in graft liver and native intestine on the pharmacokinetics of tacrolimus in liver transplant patients: a meta-analysis.
    Buendia JA; Bramuglia G; Staatz CE
    Ther Drug Monit; 2014 Aug; 36(4):442-7. PubMed ID: 24378577
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical impact of the CYP3A5 6986A>G allelic variant on kidney transplantation outcomes.
    Flahault A; Anglicheau D; Loriot MA; Thervet E; Pallet N
    Pharmacogenomics; 2017 Jan; 18(2):165-173. PubMed ID: 27977332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Donor CYP3A5 Expression Decreases Renal Transplantation Outcomes in White Renal Transplant Recipients.
    Warzyszyńska K; Zawistowski M; Karpeta E; Jałbrzykowska A; Kosieradzki M
    Ann Transplant; 2022 Jul; 27():e936276. PubMed ID: 35879888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of cytochrome P450 3A and ATP-binding cassette subfamily B member 1 polymorphisms on tacrolimus dose-adjusted trough concentrations among Korean renal transplant recipients.
    Cho JH; Yoon YD; Park JY; Song EJ; Choi JY; Yoon SH; Park SH; Kim YL; Kim CD
    Transplant Proc; 2012 Jan; 44(1):109-14. PubMed ID: 22310591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomewide Association Study of Tacrolimus Concentrations in African American Kidney Transplant Recipients Identifies Multiple CYP3A5 Alleles.
    Oetting WS; Schladt DP; Guan W; Miller MB; Remmel RP; Dorr C; Sanghavi K; Mannon RB; Herrera B; Matas AJ; Salomon DR; Kwok PY; Keating BJ; Israni AK; Jacobson PA;
    Am J Transplant; 2016 Feb; 16(2):574-82. PubMed ID: 26485092
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymorphism of the CYP3A5 gene and its effect on tacrolimus blood level.
    Nair SS; Sarasamma S; Gracious N; George J; Anish TS; Radhakrishnan R
    Exp Clin Transplant; 2015 Apr; 13 Suppl 1():197-200. PubMed ID: 25894154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies.
    Rojas L; Neumann I; Herrero MJ; Bosó V; Reig J; Poveda JL; Megías J; Bea S; Aliño SF
    Pharmacogenomics J; 2015 Feb; 15(1):38-48. PubMed ID: 25201288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-Term Clinical Impact of Adaptation of Initial Tacrolimus Dosing to CYP3A5 Genotype.
    Pallet N; Etienne I; Buchler M; Bailly E; Hurault de Ligny B; Choukroun G; Colosio C; Thierry A; Vigneau C; Moulin B; Le Meur Y; Heng AE; Legendre C; Beaune P; Loriot MA; Thervet E
    Am J Transplant; 2016 Sep; 16(9):2670-5. PubMed ID: 26990694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of CYP3A5 genetic polymorphism on tacrolimus daily dose requirements and acute rejection in renal graft recipients.
    Quteineh L; Verstuyft C; Furlan V; Durrbach A; Letierce A; Ferlicot S; Taburet AM; Charpentier B; Becquemont L
    Basic Clin Pharmacol Toxicol; 2008 Dec; 103(6):546-52. PubMed ID: 19067682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients.
    Deininger KM; Vu A; Page RL; Ambardekar AV; Lindenfeld J; Aquilante CL
    Clin Transplant; 2016 Sep; 30(9):1074-81. PubMed ID: 27314545
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Tacrolimus Starting Doses Based on CYP3A5 Phenotype or Genotype in Kidney Transplant Recipients.
    Largeau B; Guellec CB; Longuet H; Lesne P; Bouvarel A; Préteseille L; Marquet P; Halimi JM; Büchler M; Gatault P; Noble J
    Prog Transplant; 2019 Dec; 29(4):300-308. PubMed ID: 31514576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis.
    Zuo XC; Ng CM; Barrett JS; Luo AJ; Zhang BK; Deng CH; Xi LY; Cheng K; Ming YZ; Yang GP; Pei Q; Zhu LJ; Yuan H; Liao HQ; Ding JJ; Wu D; Zhou YN; Jing NN; Huang ZJ
    Pharmacogenet Genomics; 2013 May; 23(5):251-61. PubMed ID: 23459029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tacrolimus dose requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients.
    Kuypers DR; Naesens M; de Jonge H; Lerut E; Verbeke K; Vanrenterghem Y
    Ther Drug Monit; 2010 Aug; 32(4):394-404. PubMed ID: 20526235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of POR*28 on the pharmacokinetics of tacrolimus and cyclosporine A in renal transplant patients.
    Elens L; Hesselink DA; Bouamar R; Budde K; de Fijter JW; De Meyer M; Mourad M; Kuypers DR; Haufroid V; van Gelder T; van Schaik RH
    Ther Drug Monit; 2014 Feb; 36(1):71-9. PubMed ID: 24061445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.