These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32553169)

  • 1. Proline-Rich Motifs Control G2-CDK Target Phosphorylation and Priming an Anchoring Protein for Polo Kinase Localization.
    Örd M; Puss KK; Kivi R; Möll K; Ojala T; Borovko I; Faustova I; Venta R; Valk E; Kõivomägi M; Loog M
    Cell Rep; 2020 Jun; 31(11):107757. PubMed ID: 32553169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new linear cyclin docking motif that mediates exclusively S-phase CDK-specific signaling.
    Faustova I; Bulatovic L; Matiyevskaya F; Valk E; Örd M; Loog M
    EMBO J; 2021 Jan; 40(2):e105839. PubMed ID: 33210757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclin-Specific Docking Mechanisms Reveal the Complexity of M-CDK Function in the Cell Cycle.
    Örd M; Venta R; Möll K; Valk E; Loog M
    Mol Cell; 2019 Jul; 75(1):76-89.e3. PubMed ID: 31101497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes.
    Bhaduri S; Pryciak PM
    Curr Biol; 2011 Oct; 21(19):1615-23. PubMed ID: 21945277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Docking to a Basic Helix Promotes Specific Phosphorylation by G1-Cdk1.
    Faustova I; Möll K; Valk E; Loog M; Örd M
    Int J Mol Sci; 2021 Sep; 22(17):. PubMed ID: 34502421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive Analysis of G1 Cyclin Docking Motif Sequences that Control CDK Regulatory Potency In Vivo.
    Bandyopadhyay S; Bhaduri S; Örd M; Davey NE; Loog M; Pryciak PM
    Curr Biol; 2020 Nov; 30(22):4454-4466.e5. PubMed ID: 32976810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Cdk1 substrate specificity during the cell cycle.
    Kõivomägi M; Valk E; Venta R; Iofik A; Lepiku M; Morgan DO; Loog M
    Mol Cell; 2011 Jun; 42(5):610-23. PubMed ID: 21658602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates.
    Loog M; Morgan DO
    Nature; 2005 Mar; 434(7029):104-8. PubMed ID: 15744308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of the Cy motif from p21 reveals sequence degeneracy and specificity for different cyclin-dependent kinases.
    Wohlschlegel JA; Dwyer BT; Takeda DY; Dutta A
    Mol Cell Biol; 2001 Aug; 21(15):4868-74. PubMed ID: 11438644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae.
    Hu F; Aparicio OM
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8910-5. PubMed ID: 15956196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation.
    Keaton MA; Bardes ES; Marquitz AR; Freel CD; Zyla TR; Rudolph J; Lew DJ
    Curr Biol; 2007 Jul; 17(14):1181-9. PubMed ID: 17614281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multisite phosphorylation code of CDK.
    Örd M; Möll K; Agerova A; Kivi R; Faustova I; Venta R; Valk E; Loog M
    Nat Struct Mol Biol; 2019 Jul; 26(7):649-658. PubMed ID: 31270471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-faced cyclins with eyes on the targets.
    Archambault V; Buchler NE; Wilmes GM; Jacobson MD; Cross FR
    Cell Cycle; 2005 Jan; 4(1):125-30. PubMed ID: 15611618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology].
    Viallard JF; Lacombe F; Belloc F; Pellegrin JL; Reiffers J
    Cancer Radiother; 2001 Apr; 5(2):109-29. PubMed ID: 11355576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control.
    Mimura S; Seki T; Tanaka S; Diffley JF
    Nature; 2004 Oct; 431(7012):1118-23. PubMed ID: 15496876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A docking interface in the cyclin Cln2 promotes multi-site phosphorylation of substrates and timely cell-cycle entry.
    Bhaduri S; Valk E; Winters MJ; Gruessner B; Loog M; Pryciak PM
    Curr Biol; 2015 Feb; 25(3):316-325. PubMed ID: 25619768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative model for cyclin-dependent kinase control of the cell cycle: revisited.
    Uhlmann F; Bouchoux C; López-Avilés S
    Philos Trans R Soc Lond B Biol Sci; 2011 Dec; 366(1584):3572-83. PubMed ID: 22084384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state.
    Dahmann C; Diffley JF; Nasmyth KA
    Curr Biol; 1995 Nov; 5(11):1257-69. PubMed ID: 8574583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin-cdk2 substrate whose expression blocks S-phase progression.
    Hall C; Nelson DM; Ye X; Baker K; DeCaprio JA; Seeholzer S; Lipinski M; Adams PD
    Mol Cell Biol; 2001 Mar; 21(5):1854-65. PubMed ID: 11238922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Hydrophobic Patch Directs Cyclin B to Centrosomes to Promote Global CDK Phosphorylation at Mitosis.
    Basu S; Roberts EL; Jones AW; Swaffer MP; Snijders AP; Nurse P
    Curr Biol; 2020 Mar; 30(5):883-892.e4. PubMed ID: 32084401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.