These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32553179)

  • 1. Exercising Immunity: Interleukin-13 Flexes Muscle.
    Webb LM; Tait Wojno ED
    Immunity; 2020 Jun; 52(6):902-904. PubMed ID: 32553179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling.
    Neubauer O; Sabapathy S; Ashton KJ; Desbrow B; Peake JM; Lazarus R; Wessner B; Cameron-Smith D; Wagner KH; Haseler LJ; Bulmer AC
    J Appl Physiol (1985); 2014 Feb; 116(3):274-87. PubMed ID: 24311745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance.
    Gibala MJ; Little JP; van Essen M; Wilkin GP; Burgomaster KA; Safdar A; Raha S; Tarnopolsky MA
    J Physiol; 2006 Sep; 575(Pt 3):901-11. PubMed ID: 16825308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond muscle hypertrophy: why dietary protein is important for endurance athletes.
    Moore DR; Camera DM; Areta JL; Hawley JA
    Appl Physiol Nutr Metab; 2014 Sep; 39(9):987-97. PubMed ID: 24806440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inducible knockout of Dicer in adult mice does not affect endurance exercise-induced muscle adaptation.
    Oikawa S; Lee M; Motohashi N; Maeda S; Akimoto T
    Am J Physiol Cell Physiol; 2019 Feb; 316(2):C285-C292. PubMed ID: 30540495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise-induced skeletal muscle signaling pathways and human athletic performance.
    Camera DM; Smiles WJ; Hawley JA
    Free Radic Biol Med; 2016 Sep; 98():131-143. PubMed ID: 26876650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of metabolic adaptations between endurance- and sprint-trained athletes after an exhaustive exercise in two different calf muscles using a multi-slice
    Moll K; Gussew A; Nisser M; Derlien S; Krämer M; Reichenbach JR
    NMR Biomed; 2018 Apr; 31(4):e3889. PubMed ID: 29393546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic Effects of Exercise.
    Moghetti P; Bacchi E; Brangani C; Donà S; Negri C
    Front Horm Res; 2016; 47():44-57. PubMed ID: 27348753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptations of skeletal muscle mitochondria to endurance exercise: a personal perspective.
    Holloszy JO
    Exerc Sport Sci Rev; 2004 Apr; 32(2):41-3. PubMed ID: 15064646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and epigenetic sex-specific adaptations to endurance exercise.
    Landen S; Voisin S; Craig JM; McGee SL; Lamon S; Eynon N
    Epigenetics; 2019 Jun; 14(6):523-535. PubMed ID: 30957644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutritional strategies to modulate the adaptive response to endurance training.
    Hawley JA
    Nestle Nutr Inst Workshop Ser; 2013; 75():1-14. PubMed ID: 23765346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using systems biology to define the essential biological networks responsible for adaptation to endurance exercise training.
    Keller P; Vollaard N; Babraj J; Ball D; Sewell DA; Timmons JA
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1306-9. PubMed ID: 17956337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle protein turnover in endurance training: a review.
    Seene T; Kaasik P; Alev K
    Int J Sports Med; 2011 Dec; 32(12):905-11. PubMed ID: 22068931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuous versus continuous training.
    Malek MH; Hüttemann M; Lee I; Coburn JW
    Exp Physiol; 2013 Mar; 98(3):807-18. PubMed ID: 23180811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptations of skeletal muscle to prolonged, intense endurance training.
    Hawley JA
    Clin Exp Pharmacol Physiol; 2002 Mar; 29(3):218-22. PubMed ID: 11906487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Satellite cell activation induced by aerobic muscle adaptation in response to endurance exercise in humans and rodents.
    Abreu P; Mendes SV; Ceccatto VM; Hirabara SM
    Life Sci; 2017 Feb; 170():33-40. PubMed ID: 27888112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
    Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD
    Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists.
    Neal CM; Hunter AM; Brennan L; O'Sullivan A; Hamilton DL; De Vito G; Galloway SD
    J Appl Physiol (1985); 2013 Feb; 114(4):461-71. PubMed ID: 23264537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of amino acids in skeletal muscle adaptation to exercise.
    Aguirre N; van Loon LJ; Baar K
    Nestle Nutr Inst Workshop Ser; 2013; 76():85-102. PubMed ID: 23899757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endurance Exercise and the Regulation of Skeletal Muscle Metabolism.
    Booth FW; Ruegsegger GN; Toedebusch RG; Yan Z
    Prog Mol Biol Transl Sci; 2015; 135():129-51. PubMed ID: 26477913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.