These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 32553809)
1. Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Cui J; Sun T; Chen L; Zhang W Biotechnol Adv; 2020 Nov; 43():107578. PubMed ID: 32553809 [TBL] [Abstract][Full Text] [Related]
2. [Engineering photosynthetic cyanobacterial chassis: a review]. Wu Q; Chen L; Wang J; Zhang W Sheng Wu Gong Cheng Xue Bao; 2013 Aug; 29(8):1086-99. PubMed ID: 24364346 [TBL] [Abstract][Full Text] [Related]
3. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals. Gao X; Sun T; Pei G; Chen L; Zhang W Appl Microbiol Biotechnol; 2016 Apr; 100(8):3401-13. PubMed ID: 26883347 [TBL] [Abstract][Full Text] [Related]
4. [Advances in using adaptive laboratory evolution technology for engineering of photosynthetic cyanobacteria]. Gao J; Zhu X; Sun T; Chen L; Zhang W Sheng Wu Gong Cheng Xue Bao; 2023 Aug; 39(8):3075-3094. PubMed ID: 37622349 [TBL] [Abstract][Full Text] [Related]
5. Genetic and metabolic advances in the engineering of cyanobacteria. Vijay D; Akhtar MK; Hess WR Curr Opin Biotechnol; 2019 Oct; 59():150-156. PubMed ID: 31238294 [TBL] [Abstract][Full Text] [Related]
6. [Cyanobacteria cell factories for ethanol photosynthetic production: development and prospect]. Qi Y; Wang J; Luan G; Tan X; Lü X Sheng Wu Gong Cheng Xue Bao; 2017 Jun; 33(6):891-909. PubMed ID: 28895352 [TBL] [Abstract][Full Text] [Related]
7. Current processes and future challenges of photoautotrophic production of acetyl-CoA-derived solar fuels and chemicals in cyanobacteria. Miao R; Xie H; Liu X; Lindberg P; Lindblad P Curr Opin Chem Biol; 2020 Dec; 59():69-76. PubMed ID: 32502927 [TBL] [Abstract][Full Text] [Related]
8. Production of Industrial Chemicals from CO Zhou J; Meng H; Zhang W; Li Y Adv Exp Med Biol; 2018; 1080():97-116. PubMed ID: 30091093 [TBL] [Abstract][Full Text] [Related]
9. Fast-growing cyanobacterial chassis for synthetic biology application. Li Z; Li S; Chen L; Sun T; Zhang W Crit Rev Biotechnol; 2024 May; 44(3):414-428. PubMed ID: 36842999 [TBL] [Abstract][Full Text] [Related]
10. Engineering Cyanobacteria for Photosynthetic Production of C3 Platform Chemicals and Terpenoids from CO Ni J; Tao F; Xu P; Yang C Adv Exp Med Biol; 2018; 1080():239-259. PubMed ID: 30091098 [TBL] [Abstract][Full Text] [Related]
11. Toolboxes for cyanobacteria: Recent advances and future direction. Sun T; Li S; Song X; Diao J; Chen L; Zhang W Biotechnol Adv; 2018; 36(4):1293-1307. PubMed ID: 29729377 [TBL] [Abstract][Full Text] [Related]
12. Methods for enhancing cyanobacterial stress tolerance to enable improved production of biofuels and industrially relevant chemicals. Kitchener RL; Grunden AM Appl Microbiol Biotechnol; 2018 Feb; 102(4):1617-1628. PubMed ID: 29353309 [TBL] [Abstract][Full Text] [Related]
13. Designing and Constructing Artificial Small RNAs for Gene Regulation and Carbon Flux Redirection in Photosynthetic Cyanobacteria. Li S; Sun T; Chen L; Zhang W Methods Mol Biol; 2021; 2290():229-252. PubMed ID: 34009594 [TBL] [Abstract][Full Text] [Related]
14. Cyanobacteria as an eco-friendly resource for biofuel production: A critical review. Farrokh P; Sheikhpour M; Kasaeian A; Asadi H; Bavandi R Biotechnol Prog; 2019 Sep; 35(5):e2835. PubMed ID: 31063628 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Waditee R; Hibino T; Nakamura T; Incharoensakdi A; Takabe T Proc Natl Acad Sci U S A; 2002 Mar; 99(6):4109-14. PubMed ID: 11891307 [TBL] [Abstract][Full Text] [Related]
17. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products. Gomaa MA; Al-Haj L; Abed RM J Appl Microbiol; 2016 Oct; 121(4):919-31. PubMed ID: 27406848 [TBL] [Abstract][Full Text] [Related]
18. Improvement of outdoor culture efficiency of cyanobacteria by over-expression of stress tolerance genes and its implication as bio-refinery feedstock. Su HY; Chou HH; Chow TJ; Lee TM; Chang JS; Huang WL; Chen HJ Bioresour Technol; 2017 Nov; 244(Pt 2):1294-1303. PubMed ID: 28457721 [TBL] [Abstract][Full Text] [Related]
19. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Aikawa S; Ho SH; Nakanishi A; Chang JS; Hasunuma T; Kondo A Biotechnol J; 2015 Jun; 10(6):886-98. PubMed ID: 25867926 [TBL] [Abstract][Full Text] [Related]