These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 32553896)

  • 41. Lower plasticity exhibited by high- versus mid-elevation species in their phenological responses to manipulated temperature and drought.
    Gugger S; Kesselring H; Stöcklin J; Hamann E
    Ann Bot; 2015 Nov; 116(6):953-62. PubMed ID: 26424784
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Climate change and its effects on terrestrial insects and herbivory patterns.
    Cornelissen T
    Neotrop Entomol; 2011; 40(2):155-63. PubMed ID: 21584394
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insect Development, Thermal Plasticity and Fitness Implications in Changing, Seasonal Environments.
    Buckley LB; Arakaki AJ; Cannistra AF; Kharouba HM; Kingsolver JG
    Integr Comp Biol; 2017 Nov; 57(5):988-998. PubMed ID: 28662575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An ecological and evolutionary perspective on species coexistence under global change.
    Siepielski AM; Hasik AZ; Ousterhout BH
    Curr Opin Insect Sci; 2018 Oct; 29():71-77. PubMed ID: 30551829
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Disentangling the paradox of insect phenology: are temporal trends reflecting the response to warming?
    Ellwood ER; Diez JM; Ibáñez I; Primack RB; Kobori H; Higuchi H; Silander JA
    Oecologia; 2012 Apr; 168(4):1161-71. PubMed ID: 22011843
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world?
    Ferguson LV; Adamo SA
    J Exp Biol; 2023 Feb; 226(4):. PubMed ID: 36825944
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The direct and indirect effects of extreme climate events on insects.
    Filazzola A; Matter SF; MacIvor JS
    Sci Total Environ; 2021 May; 769():145161. PubMed ID: 33486167
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Will climate change affect insect pheromonal communication?
    Boullis A; Detrain C; Francis F; Verheggen FJ
    Curr Opin Insect Sci; 2016 Oct; 17():87-91. PubMed ID: 27720079
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains.
    Polato NR; Gill BA; Shah AA; Gray MM; Casner KL; Barthelet A; Messer PW; Simmons MP; Guayasamin JM; Encalada AC; Kondratieff BC; Flecker AS; Thomas SA; Ghalambor CK; Poff NL; Funk WC; Zamudio KR
    Proc Natl Acad Sci U S A; 2018 Dec; 115(49):12471-12476. PubMed ID: 30397141
    [TBL] [Abstract][Full Text] [Related]  

  • 50. There is plenty of room at the bottom: microclimates drive insect vulnerability to climate change.
    Pincebourde S; Woods HA
    Curr Opin Insect Sci; 2020 Oct; 41():63-70. PubMed ID: 32777713
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Complex community and evolutionary responses to habitat fragmentation and habitat edges: what can we learn from insect science?
    Murphy SM; Battocletti AH; Tinghitella RM; Wimp GM; Ries L
    Curr Opin Insect Sci; 2016 Apr; 14():61-65. PubMed ID: 27436648
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of experimental warming on two tropical Andean aquatic insects.
    Gallegos-Sánchez S; Domínguez E; Encalada AC; Ríos-Touma B
    PLoS One; 2022; 17(7):e0271256. PubMed ID: 35895667
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting River Macroinvertebrate Communities Distributional Shifts under Future Global Change Scenarios in the Spanish Mediterranean Area.
    Alba-Tercedor J; Sáinz-Bariáin M; Poquet JM; Rodríguez-López R
    PLoS One; 2017; 12(1):e0167904. PubMed ID: 28135280
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Eco-evolutionary feedbacks following changes in spatial connectedness.
    Bonte D; Masier S; Mortier F
    Curr Opin Insect Sci; 2018 Oct; 29():64-70. PubMed ID: 30551827
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding the connectivity of ecosystems in the Anthropocene.
    Burdon FJ
    J Anim Ecol; 2021 Jul; 90(7):1600-1604. PubMed ID: 34236087
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predator and parasitoid insects along elevational gradients: role of temperature and habitat diversity.
    Corcos D; Cerretti P; Mei M; Vigna Taglianti A; Paniccia D; Santoiemma G; De Biase A; Marini L
    Oecologia; 2018 Sep; 188(1):193-202. PubMed ID: 29797077
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Disentangling how climate change can affect an aquatic food web by combining multiple experimental approaches.
    Amundrud SL; Srivastava DS
    Glob Chang Biol; 2019 Oct; 25(10):3528-3538. PubMed ID: 31148300
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid range shifts of species associated with high levels of climate warming.
    Chen IC; Hill JK; Ohlemüller R; Roy DB; Thomas CD
    Science; 2011 Aug; 333(6045):1024-6. PubMed ID: 21852500
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting potential responses to future climate in an alpine ungulate: interspecific interactions exceed climate effects.
    Mason TH; Stephens PA; Apollonio M; Willis SG
    Glob Chang Biol; 2014 Dec; 20(12):3872-82. PubMed ID: 24957266
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Water loss in insects: an environmental change perspective.
    Chown SL; Sørensen JG; Terblanche JS
    J Insect Physiol; 2011 Aug; 57(8):1070-84. PubMed ID: 21640726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.