These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 32553918)

  • 21. Tissues with Patterned Vessels or Protein Release Induce Vascular Chemotaxis in an
    Kant RJ; Bare CF; Coulombe KLK
    Tissue Eng Part A; 2021 Oct; 27(19-20):1290-1304. PubMed ID: 33472529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces.
    Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M
    Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perfusable cell-laden matrices to guide patterning of vascularization
    Parkhideh S; Calderon GA; Janson KD; Mukherjee S; Mai AK; Doerfert MD; Yao Z; Sazer DW; Veiseh O
    Biomater Sci; 2023 Jan; 11(2):461-471. PubMed ID: 36477015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template.
    Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH
    Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture.
    Zhu W; Qu X; Zhu J; Ma X; Patel S; Liu J; Wang P; Lai CS; Gou M; Xu Y; Zhang K; Chen S
    Biomaterials; 2017 Apr; 124():106-115. PubMed ID: 28192772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directing the growth and alignment of biliary epithelium within extracellular matrix hydrogels.
    Lewis PL; Yan M; Su J; Shah RN
    Acta Biomater; 2019 Feb; 85():84-93. PubMed ID: 30590182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-scale perfused tissues via synthetic 3D soft microfluidics.
    Grebenyuk S; Abdel Fattah AR; Kumar M; Toprakhisar B; Rustandi G; Vananroye A; Salmon I; Verfaillie C; Grillo M; Ranga A
    Nat Commun; 2023 Jan; 14(1):193. PubMed ID: 36635264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.
    Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Subtractive manufacturing with swelling induced stochastic folding of sacrificial materials for fabricating complex perfusable tissues in multi-well plates.
    Rajasekar S; Lin DSY; Zhang F; Sotra A; Boshart A; Clotet-Freixas S; Liu A; Hirota JA; Ogawa S; Konvalinka A; Zhang B
    Lab Chip; 2022 May; 22(10):1929-1942. PubMed ID: 35383790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.
    Kang HW; Lee SJ; Ko IK; Kengla C; Yoo JJ; Atala A
    Nat Biotechnol; 2016 Mar; 34(3):312-9. PubMed ID: 26878319
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of microvascular constructs using high resolution electrohydrodynamic inkjet printing.
    Zheng F; Derby B; Wong J
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33285527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid Fabrication of Ready-to-Use Gelatin Scaffolds with Prevascular Networks Using Alginate Hollow Fibers as Sacrificial Templates.
    Li S; Wang K; Jiang X; Hu Q; Zhang C; Wang B
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2297-2311. PubMed ID: 33455307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensional printing and decellularized-extracellular-matrix based methods for advances in artificial blood vessel fabrication: A review.
    Li B; Shu Y; Ma H; Cao K; Cheng YY; Jia Z; Ma X; Wang H; Song K
    Tissue Cell; 2024 Apr; 87():102304. PubMed ID: 38219450
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Versatile fabrication of vascularizable scaffolds for large tissue engineering in bioreactor.
    Tocchio A; Tamplenizza M; Martello F; Gerges I; Rossi E; Argentiere S; Rodighiero S; Zhao W; Milani P; Lenardi C
    Biomaterials; 2015 Mar; 45():124-31. PubMed ID: 25662502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peptide Chitosan/Dextran Core/Shell Vascularized 3D Constructs for Wound Healing.
    Turner PR; Murray E; McAdam CJ; McConnell MA; Cabral JD
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32328-32339. PubMed ID: 32597164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering.
    Duisit J; Amiel H; Wüthrich T; Taddeo A; Dedriche A; Destoop V; Pardoen T; Bouzin C; Joris V; Magee D; Vögelin E; Harriman D; Dessy C; Orlando G; Behets C; Rieben R; Gianello P; Lengelé B
    Acta Biomater; 2018 Jun; 73():339-354. PubMed ID: 29654989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.