These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 32553966)
61. AmyloLipid Nanovesicles: A self-assembled lipid-modified starch hybrid system constructed for direct nose-to-brain delivery of curcumin. Sintov AC Int J Pharm; 2020 Oct; 588():119725. PubMed ID: 32763387 [TBL] [Abstract][Full Text] [Related]
62. Self-microemulsifying drug delivery system improves curcumin dissolution and bioavailability. Wu X; Xu J; Huang X; Wen C Drug Dev Ind Pharm; 2011 Jan; 37(1):15-23. PubMed ID: 20738181 [TBL] [Abstract][Full Text] [Related]
63. Pickering emulsions stabilized by media-milled starch particles. Lu X; Xiao J; Huang Q Food Res Int; 2018 Mar; 105():140-149. PubMed ID: 29433201 [TBL] [Abstract][Full Text] [Related]
64. Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles. Han J; Chen F; Gao C; Zhang Y; Tang X Int J Biol Macromol; 2020 Aug; 157():202-211. PubMed ID: 32344077 [TBL] [Abstract][Full Text] [Related]
65. Interactions between debranched starch and emulsifiers, polyphenols, and fatty acids. Chang R; Xiong L; Li M; Wang Y; Lin M; Qiu L; Bian X; Sun C; Sun Q Int J Biol Macromol; 2020 May; 150():644-653. PubMed ID: 32061844 [TBL] [Abstract][Full Text] [Related]
66. Effects of acid-ethanol hydrolysis and debranch on acetylated starch and its potential used for curcumin carrier. Du J; Hong Y; Cheng L; Gu Z; Li Z; Li C Carbohydr Polym; 2022 Mar; 279():119019. PubMed ID: 34980359 [TBL] [Abstract][Full Text] [Related]
67. Influence of phenolic acids on the storage and digestion stability of curcumin emulsions based on soy protein-pectin-phenolic acids ternary nano-complexes. Jin B; Zhou X; Zhou S; Liu Y; Guan R; Zheng Z; Liang Y J Microencapsul; 2019 Nov; 36(7):622-634. PubMed ID: 31478411 [No Abstract] [Full Text] [Related]
68. Stabilization of Pickering emulsions using starch nanocrystals treated with alkaline solution. Wang K; Hong Y; Gu Z; Cheng L; Li Z; Li C Int J Biol Macromol; 2020 Jul; 155():273-285. PubMed ID: 32234443 [TBL] [Abstract][Full Text] [Related]
69. Improved Physicochemical Properties of Curcumin-Loaded Solid Lipid Nanoparticles Stabilized by Sodium Caseinate-Lactose Maillard Conjugate. Huang S; He J; Cao L; Lin H; Zhang W; Zhong Q J Agric Food Chem; 2020 Jul; 68(26):7072-7081. PubMed ID: 32511914 [TBL] [Abstract][Full Text] [Related]
71. Recent advances in colloidal delivery systems for nutraceuticals: A case study - Delivery by Design of curcumin. Kharat M; McClements DJ J Colloid Interface Sci; 2019 Dec; 557():506-518. PubMed ID: 31542691 [TBL] [Abstract][Full Text] [Related]
72. Multiscale structure and precipitation mechanism of debranched starch precipitated by different alcohols. Deng C; Zhang T; Zhang X; Gu T; Xu L; Yu Z; Zheng M; Zhou Y Int J Biol Macromol; 2023 Jun; 241():124562. PubMed ID: 37088190 [TBL] [Abstract][Full Text] [Related]
73. Collagen peptide-loaded W Jo YJ; Karbstein HP; van der Schaaf US Food Funct; 2019 Jun; 10(6):3312-3323. PubMed ID: 31095142 [TBL] [Abstract][Full Text] [Related]
74. Nanoparticles prepared with biotin-esterified debranched starch as an oral carrier to improve the stability and antioxidant activity of resveratrol. Wang CC; Yang BQ; Feng R; Tao H; Xu BC; Zhang B Int J Biol Macromol; 2024 Oct; 278(Pt 1):134543. PubMed ID: 39111511 [TBL] [Abstract][Full Text] [Related]
75. Formation of curcumin nanoparticles by flash nanoprecipitation from emulsions. Margulis K; Magdassi S; Lee HS; Macosko CW J Colloid Interface Sci; 2014 Nov; 434():65-70. PubMed ID: 25168584 [TBL] [Abstract][Full Text] [Related]
76. Comparative Emulsifying Properties of Octenyl Succinic Anhydride (OSA)-Modified Starch: Granular Form vs Dissolved State. Matos M; Marefati A; Gutiérrez G; Wahlgren M; Rayner M PLoS One; 2016; 11(8):e0160140. PubMed ID: 27479315 [TBL] [Abstract][Full Text] [Related]
77. Complexation of curcumin with Lepidium sativum protein hydrolysate as a novel curcumin delivery system. Kadam D; Palamthodi S; Lele SS Food Chem; 2019 Nov; 298():125091. PubMed ID: 31272049 [TBL] [Abstract][Full Text] [Related]
78. Pickering emulsion gels stabilized by high hydrostatic pressure-induced whey protein isolate gel particles: Characterization and encapsulation of curcumin. Lv P; Wang D; Dai L; Wu X; Gao Y; Yuan F Food Res Int; 2020 Jun; 132():109032. PubMed ID: 32331631 [TBL] [Abstract][Full Text] [Related]
79. Emulsion-filled hydrogels for food applications: influence of pH on emulsion stability and a coating on microgel protection. Silva KCG; Bourbon AI; Pastrana L; Sato ACK Food Funct; 2020 Sep; 11(9):8331-8341. PubMed ID: 32924048 [TBL] [Abstract][Full Text] [Related]
80. Preparation of debranched starch nanoparticles by ionic gelation for encapsulation of epigallocatechin gallate. Liu Q; Cai W; Zhen T; Ji N; Dai L; Xiong L; Sun Q Int J Biol Macromol; 2020 Oct; 161():481-491. PubMed ID: 32534085 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]