These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32554167)

  • 1.
    Behbehani M; Uddin S; Baskaran M
    J Environ Radioact; 2020 Oct; 222():106323. PubMed ID: 32554167
    [No Abstract]   [Full Text] [Related]  

  • 2. Atmospheric residence times and excess of unsupported
    Aba A; Ismaeel A; Al-Boloushi O; Al-Shammari H; Al-Boloushi A; Malak M
    Chemosphere; 2020 Dec; 261():127690. PubMed ID: 32736243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Polonium Concentrations in Aerosols from the Gulf Oil Producing Region and the Role of Microorganisms.
    Behbehani M; Carvalho FP; Uddin S; Habibi N
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The sources and fate of (210)Po in the urban air: A review.
    Długosz-Lisiecka M
    Environ Int; 2016 Sep; 94():325-330. PubMed ID: 27295049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diurnal variations of (218)Po, (214)Pb, and (214)Po and their effect on atmospheric electrical conductivity in the lower atmosphere at Mysore city, Karnataka State, India.
    Pruthvi Rani KS; Paramesh L; Chandrashekara MS
    J Environ Radioact; 2014 Dec; 138():438-43. PubMed ID: 24787467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity size distributions for long-lived radon decay products in aerosols collected in Barcelona (Spain).
    Camacho A; Valles I; Vargas A; Gonzalez-Perosanz M; Ortega X
    Appl Radiat Isot; 2009 May; 67(5):872-5. PubMed ID: 19243958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excess of ²¹⁰polonium activity in the surface urban atmosphere. Part (1) fluctuation of the ²¹⁰Po excess in the air.
    Długosz-Lisiecka M
    Environ Sci Process Impacts; 2015 Feb; 17(2):458-64. PubMed ID: 25567523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity size distributions of radioactive airborne particles in an arid environment: a case study of Kuwait.
    Ismaeel A; Aba A; Al-Shammari H; Al-Boloushi A; Al-Boloushi O; Malak M; Al-Dabbous A; Al-Tamimi S
    Environ Sci Pollut Res Int; 2020 Sep; 27(26):33032-33041. PubMed ID: 32529611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review.
    Baskaran M
    J Environ Radioact; 2011 May; 102(5):500-13. PubMed ID: 21093126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of mean transit time of aerosols from the area of origin to the Arctic with
    Zhang W; Sadi B; Rinaldo C; Chen J; Spencer N; Ungar K
    J Environ Radioact; 2018 Aug; 188():79-86. PubMed ID: 29050725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of
    Długosz-Lisiecka M; Perka D
    Environ Sci Process Impacts; 2020 Nov; 22(11):2291-2297. PubMed ID: 33112309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: a case study for São Paulo city, Brazil.
    de Miranda RM; Lopes F; do Rosário NÉ; Yamasoe MA; Landulfo E; de Fatima Andrade M
    Environ Monit Assess; 2016 Dec; 189(1):6. PubMed ID: 27921226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.
    Anand S; Mayya YS
    J Environ Radioact; 2015 Mar; 141():153-63. PubMed ID: 25613359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial variability, mixing states and composition of various haze particles in atmosphere during winter and summertime in northwest China.
    Dong Z; Qin D; Li K; Kang S; Wei T; Lu J
    Environ Pollut; 2019 Mar; 246():79-88. PubMed ID: 30529944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric particulate mercury at the urban and forest sites in central Poland.
    Siudek P; Frankowski M; Siepak J
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2341-52. PubMed ID: 26411447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the scavenging intensity, remineralization and residence time of
    Niedermiller J; Baskaran M
    J Environ Radioact; 2019 Mar; 198():165-188. PubMed ID: 30623803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric aerosol over Vermont: chemical composition and sources.
    Polissar AV; Hopke PK; Poirot RL
    Environ Sci Technol; 2001 Dec; 35(23):4604-21. PubMed ID: 11770762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pb-210 and Po-210 atmospheric releases via fly ash from oil shale-fired power plants.
    Vaasma T; Loosaar J; Gyakwaa F; Kiisk M; Özden B; Tkaczyk AH
    Environ Pollut; 2017 Mar; 222():210-218. PubMed ID: 28062225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerosol size distribution and seasonal variation in an urban area of an industrial city in central India.
    Deshmukh DK; Deb MK; Verma D; Verma SK; Nirmalkar J
    Bull Environ Contam Toxicol; 2012 Nov; 89(5):1098-104. PubMed ID: 22990766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The temporal variations of (7)Be, (210)Pb and (210)Po in air in England.
    Daish SR; Dale AA; Dale CJ; May R; Rowe JE
    J Environ Radioact; 2005; 84(3):457-67. PubMed ID: 15970365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.