These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32554473)

  • 1. Genes of the
    Osnato M; Matias-Hernandez L; Aguilar-Jaramillo AE; Kater MM; Pelaz S
    Plant Physiol; 2020 Aug; 183(4):1663-1680. PubMed ID: 32554473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RAV genes: regulation of floral induction and beyond.
    Matías-Hernández L; Aguilar-Jaramillo AE; Marín-González E; Suárez-López P; Pelaz S
    Ann Bot; 2014 Nov; 114(7):1459-70. PubMed ID: 24812253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
    Shrestha R; Gómez-Ariza J; Brambilla V; Fornara F
    Ann Bot; 2014 Nov; 114(7):1445-58. PubMed ID: 24651369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antagonistic Transcription Factor Complexes Modulate the Floral Transition in Rice.
    Brambilla V; Martignago D; Goretti D; Cerise M; Somssich M; de Rosa M; Galbiati F; Shrestha R; Lazzaro F; Simon R; Fornara F
    Plant Cell; 2017 Nov; 29(11):2801-2816. PubMed ID: 29042404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional diversification of FD transcription factors in rice, components of florigen activation complexes.
    Tsuji H; Nakamura H; Taoka K; Shimamoto K
    Plant Cell Physiol; 2013 Mar; 54(3):385-97. PubMed ID: 23324168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rice StMADS11-like genes OsMADS22 and OsMADS47 cause floral reversions in Arabidopsis without complementing the svp and agl24 mutants.
    Fornara F; Gregis V; Pelucchi N; Colombo L; Kater M
    J Exp Bot; 2008; 59(8):2181-90. PubMed ID: 18453531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OsFTL12, a member of FT-like family, modulates the heading date and plant architecture by florigen repression complex in rice.
    Zheng R; Meng X; Hu Q; Yang B; Cui G; Li Y; Zhang S; Zhang Y; Ma X; Song X; Liang S; Li Y; Li J; Yu H; Luan W
    Plant Biotechnol J; 2023 Jul; 21(7):1343-1360. PubMed ID: 36719169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The floral repressors TEMPRANILLO1 and 2 modulate salt tolerance by regulating hormonal components and photo-protection in Arabidopsis.
    Osnato M; Cereijo U; Sala J; Matías-Hernández L; Aguilar-Jaramillo AE; Rodríguez-Goberna MR; Riechmann JL; Rodríguez-Concepción M; Pelaz S
    Plant J; 2021 Jan; 105(1):7-21. PubMed ID: 33111454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Conservation and Divergence of
    Lu S; Zhang N; Xu Y; Chen H; Huang J; Zou B
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DELLA degradation by gibberellin promotes flowering via GAF1-TPR-dependent repression of floral repressors in Arabidopsis.
    Fukazawa J; Ohashi Y; Takahashi R; Nakai K; Takahashi Y
    Plant Cell; 2021 Aug; 33(7):2258-2272. PubMed ID: 33822231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The control of flowering time by environmental factors.
    Cho LH; Yoon J; An G
    Plant J; 2017 May; 90(4):708-719. PubMed ID: 27995671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional conservation and diversification between rice OsMADS22/OsMADS55 and Arabidopsis SVP proteins.
    Lee JH; Park SH; Ahn JH
    Plant Sci; 2012 Apr; 185-186():97-104. PubMed ID: 22325870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The DTH8-Hd1 Module Mediates Day-Length-Dependent Regulation of Rice Flowering.
    Du A; Tian W; Wei M; Yan W; He H; Zhou D; Huang X; Li S; Ouyang X
    Mol Plant; 2017 Jul; 10(7):948-961. PubMed ID: 28549969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressor of rid1 (SID1) shares common targets with RID1 on florigen genes to initiate floral transition in rice.
    Deng L; Li L; Zhang S; Shen J; Li S; Hu S; Peng Q; Xiao J; Wu C
    PLoS Genet; 2017 Feb; 13(2):e1006642. PubMed ID: 28234896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the genetic and epigenetic architecture in complex network of rice flowering pathways.
    Sun C; Chen D; Fang J; Wang P; Deng X; Chu C
    Protein Cell; 2014 Dec; 5(12):889-98. PubMed ID: 25103896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling photoperiodic control of flowering by timely chromatin silencing of the florigen gene.
    He Y
    Nucleus; 2015; 6(3):179-82. PubMed ID: 25950625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering.
    Matsubara K; Ogiso-Tanaka E; Hori K; Ebana K; Ando T; Yano M
    Plant Cell Physiol; 2012 Apr; 53(4):709-16. PubMed ID: 22399582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice.
    Komiya R; Yokoi S; Shimamoto K
    Development; 2009 Oct; 136(20):3443-50. PubMed ID: 19762423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice.
    Gao H; Zheng XM; Fei G; Chen J; Jin M; Ren Y; Wu W; Zhou K; Sheng P; Zhou F; Jiang L; Wang J; Zhang X; Guo X; Wang JL; Cheng Z; Wu C; Wang H; Wan JM
    PLoS Genet; 2013; 9(2):e1003281. PubMed ID: 23437005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flowering time regulation by the CONSTANS-Like gene OsCOL10.
    Tan J; Wu F; Wan J
    Plant Signal Behav; 2017 Jan; 12(1):e1267893. PubMed ID: 28095114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.